×

Computationally generated constitutive models for particle phase rheology in gas-fluidized suspensions. (English) Zbl 1415.76681

Summary: Developing constitutive models for particle phase rheology in gas-fluidized suspensions through rigorous statistical mechanical methods is very difficult when complex inter-particle forces are present. In the present study, we pursue a computational approach based on results obtained through Eulerian-Lagrangian simulations of the fluidized state. Simulations were performed in a periodic domain for non-cohesive and mildly cohesive (Geldart Group A) particles. Based on the simulation results, we propose modified closures for pressure, bulk viscosity, shear viscosity and the rate of dissipation of pseudo-thermal energy. For non-cohesive particles, results in the high granular temperature \(T\) regime agree well with constitutive expressions afforded by the kinetic theory of granular materials, demonstrating the validity of the methodology. The simulations reveal a low \(T\) regime, where the inter-particle collision time is determined by gravitational fall between collisions. Inter-particle cohesion has little effect in the high \(T\) regime, but changes the behaviour appreciably in the low \(T\) regime. At a given \(T\), a cohesive particle system manifests a lower pressure at low particle volume fractions when compared to non-cohesive systems; at higher volume fractions, the cohesive assemblies attain higher coordination numbers than the non-cohesive systems, and experience greater pressures. Cohesive systems exhibit yield stress, which is weakened by particle agitation, as characterized by \(T\). All these effects are captured through simple modifications to the kinetic theory of granular materials for non-cohesive materials.

MSC:

76T20 Suspensions
76M28 Particle methods and lattice-gas methods
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aarons, L.; Sundaresan, S., Shear flow of assemblies of cohesive and non-cohesive granular materials, Powder Technol., 169, 1, 10-21, (2006) · doi:10.1016/j.powtec.2006.07.013
[2] Agrawal, K.; Loezos, P. N.; Syamlal, M.; Sundaresan, S., The role of meso-scale structures in rapid gas – solid flows, J. Fluid Mech., 445, 151-185, (2001) · Zbl 1156.76450 · doi:10.1017/S0022112001005663
[3] Alam, M.; Nott, P. R., The influence of friction on the stability of unbounded granular shear flow, J. Fluid Mech., 343, 267-301, (1997) · Zbl 0898.76025 · doi:10.1017/S0022112097005879
[4] Arastoopour, H., Numerical simulation and experimental analysis of gas/solid flow systems: 1999 {Fluor-Daniel} Plenary lecture, Powder Technol., 119, 2-3, 59-67, (2001) · doi:10.1016/S0032-5910(00)00417-4
[5] Balzer, G., Boëlle, A. & Simonin, O.1995Fluidized, Eulerian gas – solid flow modelling of dense fluidized beds. In Fluidization VIII, p. 1125.
[6] Beetstra, R.; Van Der Hoef, M. A.; Kuipers, J. A. M., Drag force of intermediate reynolds number flow past mono- and bidisperse arrays of spheres, AIChE J., 53, 2, 489-501, (2007) · doi:10.1002/aic.11065
[7] Berzi, D.; Vescovi, D., Different singularities in the functions of extended kinetic theory at the origin of the yield stress in granular flows, Phys. Fluids, 27, 1, (2015)
[8] Boëlle, A., Balzer, G. & Simonin, O.1995Second-order prediction of the particle-phase stress tensor of inelastic spheres in simple shear dense suspensions. In Proceedings of the 6th International Symposium on Gas-Solid Flows, ASME FED, vol. 228, pp. 9-18.
[9] Boyce, C. M.; Ozel, A.; Kolehmainen, J.; Sundaresan, S., Analysis of the effect of small amounts of liquid on gas – solid fluidization using CFD-DEM simulations, AIChE J., 63, 12, 1547-5905, (2017)
[10] Campbell, C. S., Granular shear flows at the elastic limit, J. Fluid Mech., 465, 261-291, (2002) · Zbl 1020.76051 · doi:10.1017/S002211200200109X
[11] Capecelatro, J.; Desjardins, O.; Fox, R. O., Numerical study of collisional particle dynamics in cluster-induced turbulence, J. Fluid Mech., 747, R2, (2014) · doi:10.1017/jfm.2014.194
[12] Capecelatro, J.; Desjardins, O.; Fox, R. O., On fluid-particle dynamics in fully developed cluster-induced turbulence, J. Fluid Mech., 780, 578-635, (2015) · Zbl 1382.76101 · doi:10.1017/jfm.2015.459
[13] Capecelatro, J.; Desjardins, O.; Fox, R. O., Strongly coupled fluid-particle flows in vertical channels. I. Reynolds-averaged two-phase turbulence statistics, Phys. Fluids, 28, 3, (2016)
[14] Capecelatro, J.; Desjardins, O.; Fox, R. O., Strongly coupled fluid-particle flows in vertical channels. II. Turbulence modeling, Phys. Fluids, 28, 3, (2016)
[15] Chialvo, S.; Sun, J.; Sundaresan, S., Bridging the rheology of granular flows in three regimes, Phys. Rev. E, 85, 2, (2012)
[16] Chialvo, S.; Sundaresan, S., A modified kinetic theory for frictional granular flows in dense and dilute regimes, Phys. Fluids, 25, 7, (2013) · doi:10.1063/1.4812804
[17] Da Cruz, F.; Emam, S.; Prochnow, M.; Roux, J.-N.; Chevoir, F., Rheophysics of dense granular materials: discrete simulation of plane shear flows, Phys. Rev. E, 72, 2, 21309, (2005)
[18] Cundall, P. A.; Strack, O. D. L., A discrete numerical model for granular assemblies, Geotechnique, 29, 1, 47-65, (1979) · doi:10.1680/geot.1979.29.1.47
[19] Derksen, J. J.; Sundaresan, S., Direct numerical simulations of dense suspensions: wave instabilities in liquid-fluidized beds, J. Fluid Mech., 587, 303-336, (2007) · Zbl 1141.76463 · doi:10.1017/S0022112007007094
[20] Doi, T.; Santos, A.; Tij, M., Numerical study of the influence of gravity on the heat conductivity on the basis of kinetic theory, Phys. Fluids, 11, 11, 3553-3559, (1999) · Zbl 1149.76362 · doi:10.1063/1.870212
[21] Février, P.; Simonin, O.; Squires, K. D., Partitioning of particle velocities in gas – solid turbulent flows into a continuous field and a spatially uncorrelated random distribution: theoretical formalism and numerical study, J. Fluid Mech., 533, 1-46, (2005) · Zbl 1101.76025
[22] Forsyth, A. J.; Hutton, S.; Rhodes, M. J., Effect of cohesive interparticle force on the flow characteristics of granular material, Powder Technol., 126, 150-154, (2002) · doi:10.1016/S0032-5910(02)00046-3
[23] Fox, R. O., On multiphase turbulence models for collisional fluid-particle flows, J. Fluid Mech., 742, 368-424, (2014) · Zbl 1328.76072 · doi:10.1017/jfm.2014.21
[24] Garzó, V.; Dufty, J. W., Dense fluid transport for inelastic hard spheres, Phys. Rev. E, 59, 5, 5895-5911, (1999)
[25] Garzó, V.; Tenneti, S.; Subramaniam, S.; Hrenya, C. M., Enskog kinetic theory for monodisperse gas – solid flows, J. Fluid Mech., 712, 129-168, (2012) · Zbl 1275.76204 · doi:10.1017/jfm.2012.404
[26] Geldart, D., Types of gas fluidization, Powder Technol., 7, 285-292, (1973) · doi:10.1016/0032-5910(73)80037-3
[27] Gidaspow, D., Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions, (1994), Academic Press · Zbl 0789.76001
[28] Gidaspow, D.; Huilin, L., Equation of state and radial distribution functions of FCC particles in a CFB, AIChE J., 44, 2, 279-293, (1998) · doi:10.1002/aic.690440207
[29] Goldstein, D.; Handler, R.; Sirovich, L., Modeling a no-slip flow boundary with an external force field, J. Comput. Phys., 105, 2, 354-366, (1993) · Zbl 0768.76049 · doi:10.1006/jcph.1993.1081
[30] Goniva, C.; Kloss, C.; Deen, N. G.; Kuipers, J. A. M.; Pirker, S., Influence of rolling friction on single spout fluidized bed simulation, Particuology, 10, 5, 582-591, (2012) · doi:10.1016/j.partic.2012.05.002
[31] Gu, Y.; Chialvo, S.; Sundaresan, S., Rheology of cohesive granular materials across multiple dense-flow regimes, Phys. Rev. E, 90, 3, 32206, (2014)
[32] Gu, Y.; Ozel, A.; Sundaresan, S., A modified cohesion model for CFD-DEM simulations of fluidization, Powder Technol., 296, 17-28, (2016) · doi:10.1016/j.powtec.2015.09.037
[33] Gu, Y.; Ozel, A.; Sundaresan, S., Numerical studies of the effects of fines on fluidization, AIChE J., 62, 7, 2271-2281, (2016) · doi:10.1002/aic.15229
[34] Gu, Y.; Ozel, A.; Sundaresan, S., Rheology of granular materials with size distributions across dense-flow regimes, Powder Technol., 295, 322-329, (2016) · doi:10.1016/j.powtec.2016.03.035
[35] Hamaker, H. C., The London-van der Waals attraction between spherical particles, Physica, 4, 10, 1058-1072, (1937) · doi:10.1016/S0031-8914(37)80203-7
[36] Hou, Q. F.; Zhou, Z. Y.; Yu, A. B., Micromechanical modeling and analysis of different flow regimes in gas fluidization, Chem. Engng Sci., 84, 449-468, (2012) · doi:10.1016/j.ces.2012.08.051
[37] Irani, E.; Chaudhuri, P.; Heussinger, C., Impact of attractive interactions on the rheology of dense athermal particles, Phys. Rev. Lett., 112, 18, (2014) · doi:10.1103/PhysRevLett.112.188303
[38] Israelachvili, J. N., Intermolecular and Surface Forces, (2010), Academic Press
[39] Jenkins, J. T.; Richman, M. W., Grad’s 13-moment system for a dense gas of inelastic spheres, Arch. Rat. Mech. Anal., 87, 4, (1985) · Zbl 0617.76085 · doi:10.1007/BF00250919
[40] Jenkins, J. T.; Richman, M. W., Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks, Phys. Fluids, 28, 12, 3485-3494, (1985) · Zbl 0587.76128 · doi:10.1063/1.865302
[41] Jenkins, J. T.; Savage, S. B., A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles, J. Fluid Mech., 130, 187-202, (1983) · Zbl 0523.76001 · doi:10.1017/S0022112083001044
[42] Jenkins, J. T.; Zhang, C., Kinetic theory for identical, frictional, nearly elastic spheres, Phys. Fluids, 14, 3, 1228-1235, (2002) · doi:10.1063/1.1449466
[43] Johnson, K. L., Contact Mechanics, (1987), Cambridge University Press · Zbl 0599.73108
[44] Jop, P.; Forterre, Y.; Pouliquen, O., A constitutive law for dense granular flows, Nature, 441, 727-730, (2006) · doi:10.1038/nature04801
[45] Kellogg, K. M.; Liu, P.; Lamarche, C. Q.; Hrenya, C. M., Continuum theory for rapid cohesive-particle flows: general balance equations and discrete-element-method-based closure of cohesion-specific quantities, J. Fluid Mech., 832, 345-382, (2017) · Zbl 1419.76674 · doi:10.1017/jfm.2017.642
[46] Kim, H.; Arastoopour, H., Extension of kinetic theory to cohesive particle flow, Powder Technol., 122, 1, 83-94, (2002) · doi:10.1016/S0032-5910(01)00395-3
[47] Kim, O. V.; Dunn, P. F., A microsphere-surface impact model for implementation in computational fluid dynamics, J. Aerosol. Sci., 38, 5, 532-549, (2007) · doi:10.1016/j.jaerosci.2007.03.006
[48] Kloss, C.; Goniva, C.; Hager, A.; Amberger, S.; Pirker, S., Models, algorithms and validation for opensource DEM and CFD-DEM, Prog. Comput. Fluid Dyn., 12, 2, 140-152, (2012) · doi:10.1504/PCFD.2012.047457
[49] Kobayashi, T.; Tanaka, T.; Shimada, N.; Kawaguchi, T., DEM-CFD analysis of fluidization behavior of Geldart Group A particles using a dynamic adhesion force model, Powder Technol., 248, 143-152, (2013) · doi:10.1016/j.powtec.2013.02.028
[50] Koch, D. L., Kinetic theory for a monodisperse gas – solid suspension, Phys. Fluids A, 2, 10, 1711, (1990) · Zbl 0709.76118 · doi:10.1063/1.857698
[51] Koch, D. L.; Sangani, A. S., Particle pressure and marginal stability limits for a homogeneous monodisperse gas-fluidized bed: kinetic theory and numerical simulations, J. Fluid Mech., 400, 229-263, (1999) · Zbl 0949.76085 · doi:10.1017/S0022112099006485
[52] Kolehmainen, J.; Ozel, A.; Boyce, C. M.; Sundaresan, S., A hybrid approach to computing electrostatic forces in fluidized beds of charged particles, AIChE J., 62, 7, 2282-2295, (2016) · doi:10.1002/aic.15279
[53] Kumaran, V., Constitutive relations and linear stability of a sheared granular flow, J. Fluid Mech., 506, 1-43, (2004) · Zbl 1073.76073 · doi:10.1017/S0022112003007602
[54] Kumaran, V., The constitutive relation for the granular flow of rough particles, and its application to the flow down an inclined plane, J. Fluid Mech., 561, 1-42, (2006) · Zbl 1157.76395 · doi:10.1017/S0022112006000279
[55] Kuwagi, K.; Mikami, T.; Horio, M., Numerical simulation of metallic solid bridging particles in a fluidized bed at high temperature, Powder Technol., 109, 1-3, 27-40, (2000) · doi:10.1016/S0032-5910(99)00224-7
[56] Liu, P.; Lamarche, C. Q.; Kellogg, K. M.; Hrenya, C. M., Fine-particle defluidization: Interaction between cohesion, Youngs modulus and static bed height, Chem. Engng Sci., 145, 266-278, (2016) · doi:10.1016/j.ces.2016.02.024
[57] Lun, C. K. K., Kinetic theory for granular flow of dense, slightly inelastic, slightly rough spheres, J. Fluid Mech., 233, 539-559, (1991) · Zbl 0729.76600 · doi:10.1017/S0022112091000599
[58] Lun, C. K. K. & Savage, S. B.2003Kinetic theory for inertia flows of dilute turbulent gas – solids mixtures. In Granular Gas Dynamics (ed. Pöschel, T. & Brilliantov, N.), pp. 267-289. Springer. doi:10.1007/978-3-540-39843-1_11 · doi:10.1007/978-3-540-39843-1_11
[59] Lun, C. K. K.; Savage, S. B.; Jeffrey, D. J.; Chepurniy, N., Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield, J. Fluid Mech., 140, 223-256, (1984) · Zbl 0553.73098 · doi:10.1017/S0022112084000586
[60] Ma, X.; Kato, K., Effect of interparticle adhesion forces on elutriation of fine powders from a fluidized bed of a binary particle mixture, Powder Technol., 95, 2, 93-101, (1998) · doi:10.1016/S0032-5910(97)03262-2
[61] Marchisio, D. L.; Fox, R. O., Computational {Models} for {Polydisperse} {Particulate} and {Multiphase} {Systems}, (2013), Cambridge University Press · doi:10.1017/CBO9781139016599
[62] Marchisio, D. L.; Vigil, R. D.; Fox, R. O., Quadrature method of moments for aggregation – breakage processes, J. Colloid Interface Sci., 258, 2, 322-334, (2003) · doi:10.1016/S0021-9797(02)00054-1
[63] Maurin, R.; Chauchat, J.; Frey, P., Dense granular flow rheology in turbulent bedload transport, J. Fluid Mech., 804, 490-512, (2016) · doi:10.1017/jfm.2016.520
[64] Menon, N.; Durian, D. J., Particle motions in a gas-fluidized bed of sand, Phys. Rev. Lett., 79, 18, 3407-3410, (1997) · doi:10.1103/PhysRevLett.79.3407
[65] Midi, G. D. R., On dense granular flows, Eur. Phys. J. E, 14, 341-365, (2004)
[66] Moon, S. J.; Kevrekidis, G. I.; Sundaresan, S., Compaction and dilation rate dependence of stresses in gas-fluidized beds, Phys. Fluids, 18, 8, (2006)
[67] Moreno-Atanasio, R.; Xu, B. H.; Ghadiri, M., Computer simulation of the effect of contact stiffness and adhesion on the fluidization behaviour of powders, Chem. Engng Sci., 62, 1-2, 184-194, (2007) · doi:10.1016/j.ces.2006.08.036
[68] Murphy, E.; Subramaniam, S., Freely cooling granular gases with short-ranged attractive potentials, Phys. Fluids, 27, 4, (2015) · doi:10.1063/1.4916674
[69] Murphy, E.; Subramaniam, S., Binary collision outcomes for inelastic soft-sphere models with cohesion, Powder Technol., 305, 462-476, (2017) · doi:10.1016/j.powtec.2016.09.010
[70] Ocone, R.; Sundaresan, S.; Jackson, R., Gas – particle flow in a duct of arbitrary inclination with particle – particle interactions, AIChE J., 39, 8, 1261-1271, (1993) · doi:10.1002/aic.690390802
[71] Olsson, P.; Teitel, S., Critical scaling of shear viscosity at the jamming transition, Phys. Rev. Lett., 99, 17, (2007) · doi:10.1103/PhysRevLett.99.178001
[72] 2013 OpenFOAM 2.2.2 User Manual.
[73] Otsuki, M.; Hayakawa, H., Critical behaviors of sheared frictionless granular materials near the jamming transition, Phys. Rev. E, 80, 11308, (2009)
[74] Ozel, A.; Gu, Y.; Milioli, C. C.; Kolehmainen, J.; Sundaresan, S., Towards filtered drag force model for non-cohesive and cohesive particle-gas flows, Phys. Fluids, 29, 10, (2017) · doi:10.1063/1.5000516
[75] Ozel, A.; Kolehmainen, J.; Radl, S.; Sundaresan, S., Fluid and particle coarsening of drag force for discrete-parcel approach, Chem. Engng Sci., 155, 258-267, (2016) · doi:10.1016/j.ces.2016.08.014
[76] Picard, G.; Ajdari, A.; Bocquet, L.; Lequeux, F., Simple model for heterogeneous flows of yield stress fluids, Phys. Rev. E, 66, 5, (2002) · doi:10.1103/PhysRevE.66.051501
[77] Renzo, A. D.; Maio, F. P. D., Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes, Chem. Engng Sci., 59, 3, 525-541, (2004) · doi:10.1016/j.ces.2003.09.037
[78] Rognon, P. G.; Roux, J.-N.; Naaïm, M.; Chevoir, F., Dense flows of cohesive granular materials, J. Fluid Mech., 596, 21-47, (2008) · Zbl 1131.76054 · doi:10.1017/S0022112007009329
[79] Rognon, P. G.; Roux, J.-N.; Naaïm, M.; Chevoir, F., Dense flows of bidisperse assemblies of disks down an inclined plane, Phys. Fluids, 19, 5, 58101, (2007) · Zbl 1146.76516 · doi:10.1063/1.2722242
[80] Saitoh, K.; Takada, S.; Hayakawa, H., Hydrodynamic instabilities in shear flows of dry cohesive granular particles, Soft Matt., 11, 32, 6371-6385, (2015) · doi:10.1039/C5SM01160D
[81] Sela, N.; Goldhirsch, I., Hydrodynamic equations for rapid flows of smooth inelastic spheres, to Burnett order, J. Fluid Mech., 361, 41-74, (1998) · Zbl 0927.76008 · doi:10.1017/S0022112098008660
[82] Sela, N.; Goldhirsch, I.; Noskowicz, S. H., Kinetic theoretical study of a simply sheared two-dimensional granular gas to Burnett order, Phys. Fluids, 8, 9, 2337-2353, (1996) · Zbl 1027.76648 · doi:10.1063/1.869012
[83] Seu-Kim, H.; Arastoopour, H., Simulation of {FCC} particles flow behavior in a {CFB} using modified kinetic theory, Can. J. Chem. Engng, 73, 5, 603-611, (1995) · doi:10.1002/cjce.5450730503
[84] Srivastava, A.; Sundaresan, S., Analysis of a frictional – kinetic model for gas – particle flow, Powder Technol., 129, 1-3, 72-85, (2003) · doi:10.1016/S0032-5910(02)00132-8
[85] Sun, J.; Sundaresan, S., A constitutive model with microstructure evolution for flow of rate-independent granular materials, J. Fluid Mech., 682, 590-616, (2011) · Zbl 1241.76416 · doi:10.1017/jfm.2011.251
[86] Takada, S.; Saitoh, K.; Hayakawa, H., Simulation of cohesive fine powders under a plane shear, Phys. Rev. E, 90, 6, (2014) · doi:10.1103/PhysRevE.90.062207
[87] Takada, S.; Saitoh, K.; Hayakawa, H., Kinetic theory for dilute cohesive granular gases with a square well potential, Phys. Rev. E, 94, 1, 12906, (2016)
[88] Tripathi, A.; Khakhar, D. V., Rheology of binary granular mixtures in the dense flow regime, Phys. Fluids, 23, 11, (2011) · doi:10.1063/1.3653276
[89] Van Wachem, B.; Sasic, S., Derivation, simulation and validation of a cohesive particle flow CFD model, AIChE J., 54, 1, 9-19, (2008) · doi:10.1002/aic.11335
[90] Wen, C. Y.; Yu, Y. H., Mechanics of fluidization, Chem. Engng Prog., 62, 62, 100-111, (1966)
[91] Wilson, R.; Dini, D.; Van Wachem, B., A numerical study exploring the effect of particle properties on the fluidization of adhesive particles, AIChE J., 62, 5, 1467-1477, (2016) · doi:10.1002/aic.15162
[92] Winitzki, S.2003Uniform approximations for transcendental functions. In Computational Science and Its Applications - ICCSA 2003: International Conference Montreal, Canada, May 18-21, 2003 Proceedings, Part I (ed. Kumar, V., Gavrilova, M. L., Kenneth Tan, C. J. & L’Ecuyer, P.), pp. 780-789. Springer. doi:10.1007/3-540-44839-X_82 · doi:10.1007/3-540-44839-X_82
[93] Yang, L. L.; Padding, J. T. J.; Kuipers, J. A. M. H., Modification of kinetic theory of granular flow for frictional spheres. Part I: two-fluid model derivation and numerical implementation, Chem. Engng Sci., 152, 767-782, (2016) · doi:10.1016/j.ces.2016.05.031
[94] Yang, R.; Zou, R.; Yu, A., Computer simulation of the packing of fine particles, Phys. Rev. E, 62, 3, 3900-3908, (2000) · doi:10.1103/PhysRevB.62.3900
[95] Ye, M.; Van Der Hoef, M. A.; Kuipers, J. A. M., From discrete particle model to a continuous model of geldart a particles, Chem. Engng Res. Des., 83, 7, 833-843, (2005) · doi:10.1205/cherd.04341
[96] Zhou, Z. Y.; Kuang, S. B.; Chu, K. W.; Yu, A. B., Discrete particle simulation of particle-fluid flow: model formulations and their applicability, J. Fluid Mech., 661, 482-510, (2010) · Zbl 1205.76278 · doi:10.1017/S002211201000306X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.