×

Uncertainty propagation in orbital mechanics via tensor decomposition. (English) Zbl 1336.70042

Summary: Uncertainty forecasting in orbital mechanics is an essential but difficult task, primarily because the underlying Fokker-Planck equation (FPE) is defined on a relatively high dimensional (6-D) state-space and is driven by the nonlinear perturbed Keplerian dynamics. In addition, an enormously large solution domain is required for numerical solution of this FPE (e.g. encompassing the entire orbit in the \(x-y-z\) subspace), of which the state probability density function (pdf) occupies a tiny fraction at any given time. This coupling of large size, high dimensionality and nonlinearity makes for a formidable computational task, and has caused the FPE for orbital uncertainty propagation to remain an unsolved problem. To the best of the authors’ knowledge, this paper presents the first successful direct solution of the FPE for perturbed Keplerian mechanics. To tackle the dimensionality issue, the time-varying state pdf is approximated in the CANDECOMP/PARAFAC decomposition tensor form where all the six spatial dimensions as well as the time dimension are separated from one other. The pdf approximation for all times is obtained simultaneously via the alternating least squares algorithm. Chebyshev spectral differentiation is employed for discretization on account of its spectral (“super-fast”) convergence rate. To facilitate the tensor decomposition and control the solution domain size, system dynamics is expressed using spherical coordinates in a noninertial reference frame. Numerical results obtained on a regular personal computer are compared with Monte Carlo simulations.

MSC:

70M20 Orbital mechanics
70G45 Differential geometric methods (tensors, connections, symplectic, Poisson, contact, Riemannian, nonholonomic, etc.) for problems in mechanics
35Q84 Fokker-Planck equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ammar, A., Mokdad, B., Chinesta, F., Keunings, R.: A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids: part ii: transient simulation using space-time separated representations. J. Non-Newton. Fluid Mech. 144(2), 98-121 (2007) · Zbl 1196.76047 · doi:10.1016/j.jnnfm.2007.03.009
[2] Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton (1957) · Zbl 0077.13605
[3] Beylkin, G., Mohlenkamp, M.: Algorithms for numerical analysis in high dimensions. SIAM J. Sci. Comput. 26(6), 2133-2159 (2005) · Zbl 1085.65045 · doi:10.1137/040604959
[4] Bierbaum, MM., Joseph, RI., Fry, RL., Nelson, JB.: A Fokker-Planck model for a two-body problem. In: AIP Conference Proceedings, vol. 617, pp. 340-371. AIP Publishing (2002)
[5] Bro, R.: Parafac. tutorial and applications. Chemom. Intell. Lab. Syst. 38(2), 149-171 (1997) · doi:10.1016/S0169-7439(97)00032-4
[6] Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition. Psychometrika 35(3), 283-319 (1970) · Zbl 0202.19101 · doi:10.1007/BF02310791
[7] Challa, S., Bar-Shalom, Y.: Nonlinear filter design using Fokker-Planck-Kolmogorov probability density evolutions. IEEE Trans. Aerosp. Electr. Syst. 36(1), 309-315 (2000) · doi:10.1109/7.826335
[8] Coloigner, J., Albera, L., Kachenoura, A., Noury, F., Senhadji, L.: Semi-nonnegative joint diagonalization by congruence and semi-nonnegative ica. Signal Process. 105, 185-197 (2014a) · doi:10.1016/j.sigpro.2014.05.017
[9] Coloigner, J., Karfoul, A., Albera, L., Comon, P.: Line search and trust region strategies for canonical decomposition of semi-nonnegative semi-symmetric 3rd order tensors. Linear Algebra Appl. 450, 334-374 (2014b) · Zbl 1311.65044 · doi:10.1016/j.laa.2014.02.001
[10] Demars, K.J., Bishop, R.H., Jah, M.K.: A splitting gaussian mixture method for the propagation of uncertainty in orbital mechanics. In: AAS Spaceflight Mechanics Meeting. New Orleans, Paper AAS 11-201 (2011)
[11] Dolgov, S., Khoromskij, B.N., Oseledets, I.V.: Fast solution of parabolic problems in the tensor train/quantized tensor train format with initial application to the Fokker-Planck equation. SIAM J. Sci. Comput. 34(6), A3016-A3038 (2012) · Zbl 1259.82075 · doi:10.1137/120864210
[12] Doostan, A., Iaccarino, G.: A least-squares approximation of partial differential equations with high-dimensional random inputs. J. Comput. Phys. 228(12), 4332-4345 (2009) · Zbl 1167.65322 · doi:10.1016/j.jcp.2009.03.006
[13] Doucet, A., De Freitas, N., Gordon, N.: Sequential Monte Carlo Methods in Practice. Springer, New York (2001) · Zbl 0967.00022 · doi:10.1007/978-1-4757-3437-9
[14] El Halabi, F., Gonzalez, D., Chico-Roca, A., Doblare, M.: Multiparametric response surface construction by means of proper generalized decomposition: an extension of the parafac procedure. Comput. Methods Appl. Mech. Eng. 253, 543-557 (2013) · Zbl 1297.65045 · doi:10.1016/j.cma.2012.08.005
[15] Evans, L.C.: Partial Differential Equations (Graduate Studies in Mathematics, V. 19) GSM/19. American Mathematical Society, New York (1998)
[16] Fujimoto, K., Scheeres, D., Alfriend, K.: Analytical nonlinear propagation of uncertainty in the two-body problem. J. Guid. Control Dyn. 35(2), 497-509 (2012) · doi:10.2514/1.54385
[17] Fuller, A.: Analysis of nonlinear stochastic systems by means of the Fokker-Planck equation. Int. J. Control 9(6), 603-655 (1969) · Zbl 0176.39601 · doi:10.1080/00207176908905786
[18] Geladi, P., Kowalski, B.R.: Partial least-squares regression: a tutorial. Analytica Chimica Acta 185, 1-17 (1986) · doi:10.1016/0003-2670(86)80028-9
[19] Giza, D., Singla, P., Jah, M.: An approach for nonlinear uncertainty propagation: application to orbital mechanics. In: AIAA Guidance, Navigation, and Control Conference, Chicago, pp. 1-19 (2009)
[20] Grasedyck, L., Kressner, D., Tobler, C.: A literature survey of low-rank tensor approximation techniques. arXiv preprint arXiv:1302.7121 (2013) · Zbl 1279.65045
[21] Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus, vol. 42. Springer Science & Business Media, New York (2012) · Zbl 1244.65061
[22] Halder, A., Bhattacharya, R.: Dispersion analysis in hypersonic flight during planetary entry using stochastic liouville equation. J. Guid. Control Dyn. 34(2), 459-474 (2011) · doi:10.2514/1.51196
[23] Harshman, R.A.: Foundations of the parafac procedure: models and conditions for an “explanatory” multimodal factor analysis. UCLA Working Papers in Phonetics (1970) · Zbl 1259.82075
[24] Horowitz, M.B., Damle, A., Burdick, J.W.: Linear Hamilton Jacobi Bellman equations in high dimensions. arXiv preprint arXiv:1404.1089 (2014)
[25] Horwood, J.T., Aragon, N.D., Poore, A.B.: Gaussian sum filters for space surveillance: theory and simulations. J. Guid. Control Dyn. 34(6), 1839-1851 (2011) · Zbl 1271.17015 · doi:10.2514/1.53793
[26] Horwood, J.T., Poore, A.B.: Adaptive gaussian sum filters for space surveillance. IEEE Trans. Autom. Control 56(8), 1777-1790 (2011) · Zbl 1368.93715 · doi:10.1109/TAC.2011.2142610
[27] Jones, B.A., Doostan, A., Born, G.H.: Nonlinear propagation of orbit uncertainty using non-intrusive polynomial chaos. J. Guid. Control Dyn. 36(2), 430-444 (2013) · doi:10.2514/1.57599
[28] Junkins, J., Akella, M., Alfriend, K.: Non-gaussian error propagation in orbital mechanics. J. Astronaut. Sci. 44(4), 541-563 (1996)
[29] Kolda, T., Bader, B.: Tensor decompositions and applications. SIAM Rev. 51(3), 455-500 (2009) · Zbl 1173.65029 · doi:10.1137/07070111X
[30] Kumar, M., Chakravorty, S., Singla, P., Junkins, J.L.: The partition of unity finite element approach with hp-refinement for the stationary Fokker-Planck equation. J. Sound Vib. 327(1), 144-162 (2009) · doi:10.1016/j.jsv.2009.05.033
[31] Kumar, M., Chakravorty, S., Junkins, J.L.: A semianalytic meshless approach to the transient Fokker-Planck equation. Probab. Eng. Mech. 25(3), 323-331 (2010) · doi:10.1016/j.probengmech.2010.01.006
[32] Milstein, G.N.: Numerical Integration of Stochastic Differential Equations. Springer, Berlin (1995) · Zbl 0810.65144 · doi:10.1007/978-94-015-8455-5
[33] Nouy, A.: Proper generalized decompositions and separated representations for the numerical solution of high dimensional stochastic problems. Arch. Comput. Methods Eng. 17(4), 403-434 (2010) · Zbl 1269.76079 · doi:10.1007/s11831-010-9054-1
[34] Park, R.S., Scheeres, D.J.: Nonlinear mapping of gaussian statistics: theory and applications to spacecraft trajectory design. J. Guid. Control Dyn. 29(6), 1367-1375 (2006) · doi:10.2514/1.20177
[35] Peng, L., Mohseni, K.: Nonlinear model reduction via a locally weighted POD method. Int. J. Numer, Methods Eng (2015). doi:10.1002/nme.5124 · Zbl 1352.65535
[36] Peng, L., Mohseni, K.: An online manifold learning approach for model reduction of dynamical systems. SIAM J. Numer. Anal. 52(4), 1928-1952 (2014) · Zbl 1304.78017 · doi:10.1137/130927723
[37] Sharma, S.N., Parthasarathy, H.: Dynamics of a stochastically perturbed two-body problem. Proc. R. Soc. A: Math. Phys. Eng. Sci. 463(2080), 979-1003 (2007) · Zbl 1308.70009 · doi:10.1098/rspa.2006.1801
[38] Sharma, S.N.: Non-linear filtering for a dust-perturbed two-body model. Nonlinear Dyn. 55(3), 221-238 (2009) · Zbl 1170.70319 · doi:10.1007/s11071-008-9358-y
[39] Shlens, J.: A tutorial on principal component analysis. arXiv preprint arXiv:1404.1100 (2014)
[40] Sun, Y., Kumar, M.: A meshless p-pufem Fokker-Planck equation solver with automatic boundary condition enforcement. In: American Control Conference (ACC), pp. 74-79. IEEE (2012a)
[41] Sun, Y., Kumar, M.: A Markov chain Monte Carlo particle solution of the initial uncertainty propagation problem. In: AIAA GNC Conference, Minneapolis, MN (2012b)
[42] Sun, Y., Kumar, M.: Numerical solution of high dimensional stationary Fokker-Planck equations via tensor decomposition and Chebyshev spectral differentiation. Comput. Math. Appl. 67(10), 1960-1977 (2014a) · Zbl 1367.65177
[43] Sun, Y., Kumar, M.: A tensor decomposition approach to high dimensional stationary Fokker-Planck equations. In: American Control Conference (ACC), 2014. IEEE, Portland, OR (2014b)
[44] Sun, Y., Kumar, M.: Nonlinear bayesian filtering based on Fokker-Planck equation and tensor decomposition. In: International Conference on Information Fusion. IEEE, Washington, DC (2015a)
[45] Sun, Y., Kumar, M.: A numerical solver for high dimensional transient Fokker-Planck equation in modeling polymeric fluids. J. Comput. Phys. 289, 149-168 (2015b). doi:10.1016/j.jcp.2015.02.026 · Zbl 1351.82121
[46] Sun, Y., Kumar, M.: Solution of high dimensional transient Fokker-Planck equations by tensor decomposition. In: American Control Conference (ACC), 2015. IEEE, Chicago, IL (2015c) · Zbl 1218.68134
[47] Sun, Y., Kumar, M.: A tensor decomposition method for high dimensional Fokker-Planck equation modeling polymeric liquids. In: Science and Technology Forum and Exposition. AIAA, Kissimmee, FL (2015d)
[48] Wang, C., He, X., Bu, J., Chen, Z., Chen, C., Guan, Z.: Image representation using laplacian regularized nonnegative tensor factorization. Pattern Recognit. 44(10), 2516-2526 (2011) · Zbl 1218.68134 · doi:10.1016/j.patcog.2011.03.021
[49] Yang, C., Kumar, M., Buck, K.: On the effectiveness of Monte Carlo for initial uncertainty propagation in dynamical systems. Nonlinear Dyn. (under review)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.