×

Cost assessment of control measure for brucellosis in Jilin province, China. (English) Zbl 1380.92092

Summary: In the late 1990s, the epidemic in Jilin province in China started to come back and lead to re-rising of the number of the infected human. Consequently, government is adopting standard control measures: vaccination, detection-culling and tracking-culling of sheep and so on. Due to limited government funding, which measure is the most economical is need to further investigate. In this paper, based on the transmission mechanism of brucellosis between sheep and human, we establish a dynamical model to assess these three measures. Besides the analysis of dynamical behavior of model, the economic factors are considered to estimate costs of control measures. By numerical simulation, we obtain that at present, the cost of vaccination of sheep population in Jilin province is the largest, and the tracking-culling is the smallest. For detection-culling, the theoretical cost during 20 years is largest when the detection rate is 0.4. All these provide theoretical basis and guidance for brucellosis control.

MSC:

92D30 Epidemiology
91B76 Environmental economics (natural resource models, harvesting, pollution, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Shang, D.; Xiao, D.; Yin, J.; Baskin, Y., Epidemiology and control of brucellosis in China, Vet Microbiol, 90, 165-182 (2002)
[2] Yan, S.; Wu, C., Epidemiology of brucellosis, Chin Brucell Control, 1982-1991, 1-12 (1994)
[3] Zhang, S.; Gang, S.; Zhang, G. I., The analysis of epidemic state of brucellosis in China, Control Endem Dis, 12, 6-A, 1-7 (1997)
[4] Olsen, S.; Palmer, M., Advancement of knowledge of brucella over the past 50 years, Vet Sci, 51, 6, 1076-1089 (2014)
[5] Smits, H., Brucellosis in pastoral and confined livestock: prevention and vaccination, Vet Sci, 32, 1, 219-228 (2013)
[6] Culbertson, J., Symposium on brucellosis, Science, 110, 2862, 469-485 (1949)
[7] Baskin, Y., Study shows one-fifth of female bison infected, Science, 276, 5320, 1786-1796 (1997)
[8] Li, T.; Wang, D.; Wang, Y., Brucella epidemics and analysis in Jilin province from 2000 to 2009, Chin J Ctrl Endem Dis, 25, 267-269 (2010)
[9] Li, T.; Wang, D.; Gang, S.; Zhao, Y.; Liu, F., Analysis of the brucellosis epidemic situation in Jilin, 2000-2007, Dis Surveill, 23, 287-288 (2008)
[10] Qi, C.; Liu, R., Prevention and control work review and countermeasures for brucellosis in Jilin province, Chin J Ctrl Endem Dis, 19, 362-364 (2004)
[11] Gang, S.; Wang, D.; Wang, J., Current situation and control measures of brucellosis in Jilin province, Chin J Ctrl Endem Dis, 19, 226-228 (2004)
[12] Wang, Z.; Bauch, C. T.; Bhattacharyya, S., Statistical physics of vaccination, Phys Rep, 664, 1-113 (2016) · Zbl 1359.92111
[13] Zhang, J.; Jin, Z.; Sun, G. Q.; Zhou, T.; Ruan, S., Analysis of rabies in China: transmission dynamics and control, PLoS ONE, 6 (2011)
[14] Zhang, J.; Jin, Z.; Sun, G. Q.; Sun, X.; Ruan, S., Modeling seasonal rabies epidemic in China, Bull Math Biol, 74, 1226-1251 (2012) · Zbl 1237.92056
[15] Xiao, Y. N.; Sun, X. D.; Tang, S. Y.; Wu, J. H., Transmission potential of the novel avian influenza A(H7N9) infection in mainland China, J Theor Biol, 352, 1-5 (2014) · Zbl 1412.92303
[16] Zhang, J.; Jin, Z.; Sun, G. Q.; Sun, X. D.; Wang, Y. M.; Huang, B., Determination of original infection source of H7N9 avian influenza by dynamical model, Sci Rep, 4, 4846 (2014)
[17] Wang, L.; Teng, Z.; Zhang, T., Threshold dynamics of a malaria transmission model in periodic environment, Commun Nonlinear Sci Numer Simul, 18, 1288-1303 (2013) · Zbl 1274.92050
[18] Lou, Y.; Zhao, X., A climated-based malaria transmission model with structured vector population, SIAM J Appl Math, 70, 2023-2044 (2010) · Zbl 1221.34224
[19] Mukandavire, Z., Estimating the reproductive numbers for the 2008-2009 cholera outbreaks in Zimbabwe, Proc Natl Acad Sci USA, 108, 8767-8772 (2011)
[20] Sun, G. Q.; Xie, J. H.; Huang, S. H.; Jin, Z.; Li, M. T.; Liu, L., Transmission dynamics of cholera: mathematical modeling and control strategies, Commun Nonlinear Sci Numer Simul, 45, 235-244 (2017) · Zbl 1485.92154
[21] Hou, Q.; Sun, X.; Zhang, J.; Liu, Y.; Wang, Y.; Jin, Z., Modeling the transmission dynamics of sheep brucellosis in Inner Mongolia Autonomous Region, China, Math Biosci, 242, 51-58 (2013) · Zbl 1257.92032
[22] Li, M.; Sun, G.; Zhang, J.; Jin, Z.; Sun, X.; Wang, Y., Transmission dynamics and control for a brucellosis model in Hinggan League of Inner Mongolia, China, Math Biosci Eng, 11, 1115-1137 (2014) · Zbl 1306.92061
[23] Zhang, J.; Sun, X. D.; Sun, G. Q.; Hou, Q.; Li, M.; Huang, B., Prediction and control of brucellosis transmission of dairy cattle in Zhejiang province, China, PLoS ONE, 9, 11 (2014)
[24] Nie, J.; Sun, X. D.; Sun, G. Q.; Zhang, J.; Jin, Z., Modeling the transmission dynamics of dairy cattle brucellosis in Jilin province, China, J Biol Syst, 22, 04, 533-554 (2014) · Zbl 1302.92134
[25] Li, M.; Sun, G.; Wu, Y.; Zhang, J.; Jin, Z., Transmission dynamics of a multi-group brucellosis model with mixed cross infection in public farm, Appl Math Comput, 237, 582-594 (2014) · Zbl 1334.92415
[26] Li, M. T.; Jin, Z.; Sun, G. Q., Modeling direct and indirect disease transmission using multi-group model, J Math Anal Appl, 446, 2, 1292-1309 (2017) · Zbl 1361.92069
[27] Capasso, V.; Serio, G., A generalization of the Kermack-Mckendrick deterministic epidemic model, Math Biosci, 42, 43-61 (1978) · Zbl 0398.92026
[28] Liu, W. M.; Hethcote, H. W.; Levin, S. A., Dynamical behavior of epidemiological models with nonlinear incidence rates, J Math Biol, 25, 359-380 (1987) · Zbl 0621.92014
[29] Liu, W. M.; Levin, S. A.; Iwasa, Y., Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J Math Biol, 23, 187-204 (1986) · Zbl 0582.92023
[30] Xie, F.; Horan, R. D., Disease and behavioral dynamics for brucellosis control in Greater Yellowstone Area, J Agric Resour Econ, 34, 11-33 (2009)
[31] Public health science data center. http://www.phsciencedata.cn/Share/ky_sjml.jsp?id=aafa8285-42ae-4dbc-a828-152c2cef6396; Public health science data center. http://www.phsciencedata.cn/Share/ky_sjml.jsp?id=aafa8285-42ae-4dbc-a828-152c2cef6396
[32] China Agricultural Press, China Animal Industry Yearbook, China Agricultural Press, 2000-2013.; China Agricultural Press, China Animal Industry Yearbook, China Agricultural Press, 2000-2013.
[33] National Bureau of Statistics of China. China Statistical Yearbook. China Statistics Press, 2001-2013.; National Bureau of Statistics of China. China Statistical Yearbook. China Statistics Press, 2001-2013.
[34] Sun, G. Q.; Wang, C. H.; Wu, Z. Y., Pattern dynamics of a Gierer-Meinhardt model with spatial effects, Nonlinear Dyn, 88, 1385-1396 (2017)
[35] Sun, G. Q.; Jusup, M.; Jin, Z.; Wang, Y.; Wang, Z., Pattern transitions in spatial epidemics: mechanisms and emergent properties, Phys Life Rev, 19, 43-73 (2016)
[36] Wang, Z.; Zhao, D. W.; Wang, L.; Sun, G. Q.; Jin, Z., Immunity of multiplex networks via acquaintance vaccination, EPL, 112, 48002 (2015)
[37] Yu, Y.; Xiao, G.; Zhou, J., System crash as dynamics of complex networks, Proc Natl Acad Sci, 113, 42, 11726-11731 (2016) · Zbl 1355.92101
[38] Wang, Z.; Andrews, M. A.; Wu, Z. X., Coupled disease-behavior dynamics on complex networks: a review, Phys Life Rev, 15, 1-29 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.