×

Evolutionary analysis and structural characterization of Aquilaria sinensis sesquiterpene synthase in agarwood formation: a computational study. (English) Zbl 1406.92382

Summary: Agarwood originating from Aquilaria sinensis contains sesquiterpenoids that have tremendous commercial value in the pharmaceutical and fragrance industries. Aquilaria sinensis sesquiterpene synthase (AsSTS) is the key enzyme in the agarwood biosynthesis pathway, and its activity directly affects the chemical composition of agarwood; however, its role in species evolution remains unclear. In this study, we performed an evolutionary analysis based on 68 plant sesquiterpene synthase (STS) genes and further structural characterization of the gene encoding AsSTS to explore its molecular evolution. The phylogenetic tree indicated that these STS genes included three subfamilies. Additionally, 23 positively selected sites were detected, and no influence of recombination was found. Furthermore, the protein structure of AsSTS was characterized using primary sequence and structural analyses as having a functional active site lid domain, a substrate binding site, two post-translational modification sites and four conserved motifs. Finally, most virtual mutations of positively selected sites could be stabilized against thermal denaturation by a decrease in free energy, and three virtual mutations (D403R, G470Q and S538K) were shown to play important roles in the function and stability of AsSTS. The molecular evolutionary analysis of plant STSs provides essential clues for further experimental site-directed mutagenesis and molecular modification of AsSTS.

MSC:

92C80 Plant biology
92D10 Genetics and epigenetics
92D15 Problems related to evolution
92C40 Biochemistry, molecular biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alam, P.; Kiran, U.; Ahmad, M. M.; Kamaluddin; Khan, M. A.; Jhanwar, S.; Abdin, M., Isolation, characterization and structural studies of amorpha - 4, 11-diene synthase (ADS(3963)) from Artemisia annua L, Bioinformation, 4, 421-429 (2010)
[2] Anisimova, M.; Bielawski, J. P.; Yang, Z., Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution, Mol. Biol. Evol., 18, 1585-1592 (2001)
[3] Arimura, G.; Garms, S.; Maffei, M.; Bossi, S.; Schulze, B.; Leitner, M.; Mithofer, A.; Boland, W., Herbivore-induced terpenoid emission in Medicago truncatula: concerted action of jasmonate, ethylene and calcium signaling, Planta, 227, 453-464 (2008)
[4] Bielawski, J. P.; Yang, Z., Maximum likelihood methods for detecting adaptive evolution after gene duplication, J. Struct. Funct. Genom., 3, 201-212 (2003)
[5] DePristo, M. A.; Weinreich, D. M.; Hartl, D. L., Missense meanderings in sequence space: a biophysical view of protein evolution, Nat. Rev. Genet., 6, 678-687 (2005)
[6] Edgar, R. C., MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res., 32, 1792-1797 (2004)
[7] Fao, R., Report of the FAO ad hoc expert advisory panel for the assessment of proposals to amend appendices I and II of CITES concerning commercially-exploited aquatic species, Rome, 748, 13-16 (2004)
[8] Gillies, R. J.; Verduzco, D.; Gatenby, R. A., Evolutionary dynamics of carcinogenesis and why targeted therapy does not work, Nat. Rev. Cancer, 12, 487-493 (2012)
[9] The Angiosperm Phylogeny Group 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1-20 doi:10.1111/boj.12385; The Angiosperm Phylogeny Group 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1-20 doi:10.1111/boj.12385
[10] Guex, N.; Peitsch, M. C., SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling, Electrophoresis, 18, 2714-2723 (1997)
[11] Guex, N.; Peitsch, M. C.; Schwede, T., Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective, Electrophoresis, 30, Suppl 1, S162-S173 (2009)
[12] Guindon, S.; Rodrigo, A. G.; Dyer, K. A.; Huelsenbeck, J. P., Modeling the site-specific variation of selection patterns along lineages, Proc. Natl. Acad. Sci. U S A, 101, 12957-12962 (2004)
[13] Helgason, A.; Palsson, S.; Thorleifsson, G.; Grant, S. F.; Emilsson, V.; Gunnarsdottir, S.; Adeyemo, A.; Chen, Y.; Chen, G.; Reynisdottir, I.; Benediktsson, R.; Hinney, A.; Hansen, T.; Andersen, G.; Borch-Johnsen, K.; Jorgensen, T.; Schafer, H.; Faruque, M.; Doumatey, A.; Zhou, J.; Wilensky, R. L.; Reilly, M. P.; Rader, D. J.; Bagger, Y.; Christiansen, C.; Sigurdsson, G.; Hebebrand, J.; Pedersen, O.; Thorsteinsdottir, U.; Gulcher, J. R.; Kong, A.; Rotimi, C.; Stefansson, K., Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution, Nat. Genet., 39, 218-225 (2007)
[14] Huang, Y.; Wang, X.; Ge, S.; Rao, G. Y., Divergence and adaptive evolution of the gibberellin oxidase genes in plants, BMC Evol. Biol., 15, 207 (2015)
[15] Katoh, S.; Hyatt, D.; Croteau, R., Altering product outcome in Abies grandis (-)-limonene synthase and (-)-limonene/(-)-alpha-pinene synthase by domain swapping and directed mutagenesis, Arch. Biochem. Biophys., 425, 65-76 (2004)
[16] Kim, Y. S.; Cho, J. H.; Park, S.; Han, J. Y.; Back, K.; Choi, Y. E., Gene regulation patterns in triterpene biosynthetic pathway driven by overexpression of squalene synthase and methyl jasmonate elicitation in Bupleurum falcatum, Planta, 233, 343-355 (2011)
[17] Lancaster, C.; Espinoza, E., Evaluating agarwood products for 2-(2-phenylethyl)chromones using direct analysis in real time time-of-flight mass spectrometry, Rapid Commun. Mass Spectrom., 26, 2649-2656 (2012)
[18] Li, J. X.; Fang, X.; Zhao, Q.; Ruan, J. X.; Yang, C. Q.; Wang, L. J.; Miller, D. J.; Faraldos, J. A.; Allemann, R. K.; Chen, X. Y.; Zhang, P., Rational engineering of plasticity residues of sesquiterpene synthases from Artemisia annua: product specificity and catalytic efficiency, Biochem. J., 451, 417-426 (2013)
[19] Li, W.; Liao, G.; Dong, W. H.; Kong, F. D.; Wang, P.; Wang, H.; Mei, W. L.; Dai, H. F., Sesquiterpenoids from Chinese agarwood induced by artificial holing, Molecules, 21, 274 (2016)
[20] Li, Y.; Sheng, N.; Wang, L.; Li, S.; Chen, J.; Lai, X., Analysis of 2-(2-Phenylethyl)chromones by UPLC-ESI-QTOF-MS and multivariate statistical methods in wild and cultivated agarwood, Int. J. Mol. Sci., 17, 711 (2016)
[21] Lingbeck, J. M.; O’Bryan, C. A.; Martin, E. M.; Adams, J. P.; Crandall, P. G., Sweetgum: An ancient source of beneficial compounds with modern benefits, Pharmacogn. Rev., 9, 1-11 (2015)
[22] Liu, Y.; Chen, H.; Yang, Y.; Zhang, Z.; Wei, J.; Meng, H.; Chen, W.; Feng, J.; Gan, B.; Chen, X.; Gao, Z.; Huang, J.; Chen, B.; Chen, H., Whole-tree agarwood-inducing technique: an efficient novel technique for producing high-quality agarwood in cultivated Aquilaria sinensis trees, Molecules, 18, 3086-3106 (2013)
[23] Manson, M. M., Cancer prevention - the potential for diet to modulate molecular signalling, Trends Mol. Med., 9, 11-18 (2003)
[24] Martin, D. P.; Murrell, B.; Golden, M.; Khoosal, A.; Muhire, B., RDP4: detection and analysis of recombination patterns in virus genomes, Virus Evol., 1, vev003 (2015)
[25] Masso, M.; Vaisman, II, Accurate prediction of enzyme mutant activity based on a multibody statistical potential, Bioinformatics, 23, 3155-3161 (2007)
[26] Mei, W. L.; Yang, D. L.; Wang, H.; Yang, J. L.; Zeng, Y. B.; Guo, Z. K.; Dong, W. H.; Li, W.; Dai, H. F., Characterization and determination of 2-(2-phenylethyl)chromones in agarwood by GC-MS, Molecules, 18, 12324-12345 (2013)
[27] Muangphrom, P.; Seki, H.; Suzuki, M.; Komori, A.; Nishiwaki, M.; Mikawa, R.; Fukushima, E. O.; Muranaka, T., Functional analysis of Amorpha-4,11-Diene Synthase (ADS) homologs from Non-Artemisinin-producing Artemisia species: the discovery of Novel Koidzumiol and (+)-alpha-Bisabolol synthases, Plant Cell Physiol., 57, 1678-1688 (2016)
[28] Nielsen, R.; Yang, Z., Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene, Genetics, 148, 929-936 (1998)
[29] Persoon, G. A., Agarwood: the life of a wounded tree, IIAS Newslett., 45, 24-25 (2007)
[30] Posada, D., Using MODELTEST and PAUP* to select a model of nucleotide substitution, Curr Protoc Bioinformatics Chapter 6, Unit 6.5. (2003)
[31] Posada, D.; Crandall, K. A., MODELTEST: testing the model of DNA substitution, Bioinformatics, 14, 817-818 (1998)
[32] Ronquist, F.; Huelsenbeck, J. P., MrBayes 3: Bayesian phylogenetic inference under mixed models, Bioinformatics, 19, 1572-1574 (2003)
[33] Rost, B.; Yachdav, G.; Liu, J., The PredictProtein server, Nucleic Acids Res., 32, W321-W326 (2004)
[34] Sen, S.; Dehingia, M.; Talukdar, N. C.; Khan, M., Chemometric analysis reveals links in the formation of fragrant bio-molecules during agarwood (Aquilaria malaccensis) and fungal interactions, Sci. Rep., 7, 44406 (2017)
[35] Shriner, D.; Nickle, D. C.; Jensen, M. A.; Mullins, J. I., Potential impact of recombination on sitewise approaches for detecting positive natural selection, Genet. Res., 81, 115-121 (2003)
[36] Simmons, A. D.; Nguyen, T. K.; Follis, J. L.; Ribes-Zamora, A., Using a PyMOL activity to reinforce the connection between genotype and phenotype in an undergraduate genetics laboratory, PLoS One, 9, Article e114257 pp. (2014)
[37] Starks, C. M.; Back, K.; Chappell, J.; Noel, J. P., Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase, Science, 277, 1815-1820 (1997)
[38] Suyama, M.; Torrents, D.; Bork, P., PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments, Nucleic Acids Res., 34, W609-W612 (2006)
[39] Tamura, K.; Dudley, J.; Nei, M.; Kumar, S., MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0, Mol. Biol. Evol., 24, 1596-1599 (2007)
[40] Tokuriki, N.; Stricher, F.; Serrano, L.; Tawfik, D. S., How protein stability and new functions trade off, PLoS Comput. Biol., 4, Article e1000002 pp. (2008)
[41] Wang, H. N.; Dong, W. H.; Huang, S. Z.; Li, W.; Kong, F. D.; Wang, H.; Wang, J.; Mei, W. L.; Dai, H. F., Three new sesquiterpenoids from agarwood of Aquilaria crassna, Fitoterapia, 114, 7-11 (2016)
[42] Whelan, S.; Goldman, N., Distributions of statistics used for the comparison of models of sequence evolution in phylogenetics, Mol. Biol. Evol., 16, 1292-1299 (1999)
[43] Whittington, D. A.; Wise, M. L.; Urbansky, M.; Coates, R. M.; Croteau, R. B.; Christianson, D. W., Bornyl diphosphate synthase: structure and strategy for carbocation manipulation by a terpenoid cyclase, Proc. Natl. Acad. Sci. U S A, 99, 15375-15380 (2002)
[44] Wiart, C., Goniothalamus species: a source of drugs for the treatment of cancers and bacterial infections?, Evid. Based Complement Alternat. Med., 4, 299-311 (2007)
[45] Williams, D. C.; McGarvey, D. J.; Katahira, E. J.; Croteau, R., Truncation of limonene synthase preprotein provides a fully active ’pseudomature’ form of this monoterpene cyclase and reveals the function of the amino-terminal arginine pair, Biochemistry, 37, 12213-12220 (1998)
[46] Wilson, C. H.; Ali, E. S.; Scrimgeour, N.; Martin, A. M.; Hua, J.; Tallis, G. A.; Rychkov, G. Y.; Barritt, G. J., Steatosis inhibits liver cell store-operated Ca(2)(+) entry and reduces ER Ca(2)(+) through a protein kinase C-dependent mechanism, Biochem. J., 466, 379-390 (2015)
[47] Wong, W. S.; Yang, Z.; Goldman, N.; Nielsen, R., Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites, Genetics, 168, 1041-1051 (2004)
[48] Woodgett, J. R.; Gould, K. L.; Hunter, T., Substrate specificity of protein kinase C. Use of synthetic peptides corresponding to physiological sites as probes for substrate recognition requirements, Eur. J. Biochem., 161, 177-184 (1986)
[49] Xia, X., DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution, Mol. Biol. Evol., 30, 1720-1728 (2013)
[50] Xia, X.; Xie, Z.; Salemi, M.; Chen, L.; Wang, Y., An index of substitution saturation and its application, Mol. Phylogenet. Evol., 26, 1-7 (2003)
[51] Xin, H. E.; Wei, Y. E.; Gao, X. X.; Lei, W.; Zhang, W. M.; Pharmacy, D. O., Cloning,bioinformatics,and expression analysis of sesquiterpene synthase gene As-Ses TPS1 from Aquilaria sinensis, Chin. Tradit. Herbal Drugs, 46, 733-739 (2015)
[52] Yang, D. L.; Wang, H.; Guo, Z. K.; Dong, W. H.; Mei, W. L.; Dai, H. F., A new 2-(2-phenylethyl)chromone derivative in Chinese agarwood “Qi-Nan” from Aquilaria sinensis, J. Asian Nat. Prod. Res., 16, 770-776 (2014)
[53] Yang, Y.; Mei, W. L.; Kong, F. D.; Chen, H. Q.; Li, W.; Chen, Z. B.; Dai, H. F., Four new bi-2-(2-phenylethyl)chromone derivatives of agarwood from Aquilaria crassna, Fitoterapia, 119, 20-25 (2017)
[54] Yang, Z., PAML: a program package for phylogenetic analysis by maximum likelihood, Comput. Appl. Biosci., 13, 555-556 (1997)
[55] Yang, Z., Inference of selection from multiple species alignments, Curr. Opin. Genet. Dev., 12, 688-694 (2002)
[56] Yang, Z.; Wong, W. S.; Nielsen, R., Bayes empirical bayes inference of amino acid sites under positive selection, Mol. Biol. Evol., 22, 1107-1118 (2005)
[57] Yoon, S. J.; Sukweenadhi, J.; Khorolragchaa, A.; Mathiyalagan, R.; Subramaniyam, S.; Kim, Y. J.; Kim, H. B.; Kim, M. J.; Kim, Y. J.; Yang, D. C., Overexpression of Panax ginseng sesquiterpene synthase gene confers tolerance against Pseudomonas syringae pv. tomato in Arabidopsis thaliana, Physiol. Mol. Biol. Plants, 22, 485-495 (2016)
[58] Yoshikuni, Y.; Ferrin, T. E.; Keasling, J. D., Designed divergent evolution of enzyme function, Nature, 440, 1078-1082 (2006)
[59] Yoshikuni, Y.; Martin, V. J.; Ferrin, T. E.; Keasling, J. D., Engineering cotton (+)-delta-cadinene synthase to an altered function: germacrene D-4-ol synthase, Chem. Biol., 13, 91-98 (2006)
[60] Zhang, J.; Nielsen, R.; Yang, Z., Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level, Mol. Biol. Evol., 22, 2472-2479 (2005)
[61] Zhen-Qiu, L. I.; Gao, R. P.; Cheng, L. B.; Liu, X. H.; Zhu, H. J., A single amino acid mutation R262K switches amorpha-4,11-diene synthase to(3R)-(E)-nerolidol synthase, J. Hebei Agric. Univ., 38, 12-18 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.