×

zbMATH — the first resource for mathematics

First-order expressivity for S5-models: Modal vs. two-sorted languages. (English) Zbl 0990.03014
Summary: Standard models for modal predicate logic consist of a Kripke frame whose worlds come equipped with relational structures. Both modal and two-sorted predicate logic are natural languages for speaking about such models. In this paper we compare their expressivity. We determine a fragment of the two-sorted language for which the modal language is expressively complete on S5-models. Decidable criteria for modal definability are presented.

MSC:
03B45 Modal logic (including the logic of norms)
03B20 Subsystems of classical logic (including intuitionistic logic)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abiteboul, S., Herr, L. and van den Bussche, J.: Temporal connectives versus explicit timestamps in temporal query languages, in J. Clifford and A. Tuzhilin (eds), Recent Advances in Temporal Databases, Springer, 1995, pp. 43–57. · Zbl 0943.68052
[2] Blackburn, P.: Nominal tense logic, Notre Dame J. Formal Logic 34 (1993), 56–83. · Zbl 0789.03018 · doi:10.1305/ndjfl/1093634564
[3] Bowen, K. A.: Model Theory of Modal Logic, Reidel, Dordrecht, 1979. · Zbl 0395.03022
[4] Chagrov, A. V. and Zakharyaschev, M. V.: Modal Logic, Clarendon Press, Oxford, 1997.
[5] Chang, C. C. and Keisler, H. J.: Model Theory, North-Holland, Amsterdam, 1990.
[6] Cresswell, M. J.: A note on de re modalities, Logique et Analyse 158 (1997), 147–153. · Zbl 0979.03017
[7] de Rijke, M.: The modal logic of inequality, J. Symbolic Logic 57 (1990), 566–584. · Zbl 0788.03019
[8] Fine, K.: Model theory for modal logic, Part I: The de re/de dicto distinction, J. Philos. Logic 7 (1978), 125–156. · Zbl 0375.02008
[9] Fine, K.: Model theory for modal logic, Part II: The elimination of de re modality, J. Philos. Logic 7 (1978), 277–306. · Zbl 0409.03007
[10] Fine, K.:Model theory for modal logic, Part III: Existence and predication, J. Philos. Logic 10 (1981), 293–307. · Zbl 0464.03017
[11] Forbes, G.: Languages of Possibility, Basil Blackwell, Oxford, 1989.
[12] Garson, J. W.: Quantification in modal logic, in D. Gabbay and F. Guenthner (eds), Handbook of Philosophical Logic, Vol. II, Kluwer Acad. Publ., Dordrecht, 1984, pp. 249–307. · Zbl 0875.03050
[13] Ghilardi, S.: Incompleteness results in Kripke semantics, J. Symbolic Logic 56 (1991), 517–538. · Zbl 0745.03020 · doi:10.2307/2274697
[14] Hazen, A.: Expressive completeness in modal language, J. Philos. Logic 5 (1976), 25–46. · Zbl 0347.02011 · doi:10.1007/BF00263656
[15] Hodes, H.: Some theorems on the expressive limitations of modal languages, J. Philos. Logic 13 (1984), 13–26. · Zbl 0538.03014 · doi:10.1007/BF00297574
[16] Hodkinson, I., Wolter, F. and Zakharyaschev, M.: Decidable fragments of first-order temporal logics, Ann. Pure Appl. Logic 106 (2000), 85–134. · Zbl 0999.03015 · doi:10.1016/S0168-0072(00)00018-X
[17] Hughes, G. E. and Cresswell, M. J.: A New Introduction to Modal Logic, Routledge, London, 1996. · Zbl 0855.03002
[18] Kaminski, M.: The elimination of de re formulas, J. Philos. Logic 26 (1997), 411–422. · Zbl 0885.03018 · doi:10.1023/A:1004228430102
[19] Kamp, H.: Formal properties of ’now’, Theoria 37 (1972), 227–273. · Zbl 0269.02008 · doi:10.1111/j.1755-2567.1971.tb00071.x
[20] Kim, J.: Supervenience and Mind, Cambridge University Press, 1993.
[21] Lewis, D.: On the Plurality of Worlds, Basil Blackwell, Oxford, 1986.
[22] McLaughlin, B. P.: Varieties of supervenience, in E. Savellos and U. Yalçin (eds), Supervenience: New Essays, Cambridge University Press, Cambridge, 1995, pp. 23–59.
[23] Savellos, E. and Yalçin, U. (eds): Supervenience: New Essays, Cambridge University Press, 1995.
[24] Skvortsov, D. P. and Shehtman, V. B.: Maximal kripke-type semantics for modal and superintuitionistic predicate logics, Ann. Pure Appl. Logic 63 (1993), 69–101. · Zbl 0794.03028 · doi:10.1016/0168-0072(93)90210-5
[25] van Benthem, J.: Correspondence theory, in D. Gabbay and F. Guenthner (eds), Handbook of Philosophical Logic, Vol. II, Kluewer, Acad. Publ., Dordrecht, 1984, pp. 167–247. · Zbl 0875.03048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.