zbMATH — the first resource for mathematics

Oscillatory regimes in a mosquito population model with larval feedback on egg hatching. (English) Zbl 1448.92251
Summary: Understanding mosquitoes life cycle is of great interest presently because of the increasing impact of vector borne diseases in several countries. There is evidence of oscillations in mosquito populations independent of seasonality, still unexplained, based on observations both in laboratories and in nature. We propose a simple mathematical model of egg hatching enhancement by larvae which produces such oscillations that conveys a possible explanation. We propose both a theoretical analysis, based on slow-fast dynamics and Hopf bifurcation, and numerical investigations in order to shed some light on the mechanisms at work in this model.
92D25 Population dynamics (general)
34C23 Bifurcation theory for ordinary differential equations
Full Text: DOI
[1] V.R. Aznar, M. Otero, M.S.D. Majo, S. Fischer, and H.G. Solari, Modeling the complex hatching and development of Aedes aegypti in temperate climates, Ecol. Model. 253 (2013), pp. 44-55. doi: 10.1016/j.ecolmodel.2012.12.004[Crossref], [Web of Science ®], [Google Scholar]
[2] V.R. Aznar, M.S.D. Majo, S. Fischer, D. Francisco, M.A. Natiello, and H.G. Solari, A model for the development of Aedes (Stegomyia) aegypti as a function of the available food, J. Theoret. Biol. 365 (2015), pp. 311-324. doi: 10.1016/j.jtbi.2014.10.016[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1314.92032
[3] J. Bara, Z. Rapti, C.E. Cáceres, and E.J. Muturi, Effect of larval competition on extrinsic incubation period and vectorial capacity of Aedes albopictus for dengue virus, PLoS ONE 10(5) (2015), pp. 1-18. doi: 10.1371/journal.pone.0126703[Crossref], [Web of Science ®], [Google Scholar]
[4] S. Bhatt, P.W. Gething, O.J. Brady, J.P. Messina, A.W. Farlow, C.L. Moyes, J.M. Drake, J.S.Brownstein, A.G. Hoen, O. Sankoh, M.F. Myers, D.B. George, T. Jaenisch, G.R.W. Wint, C.P.Simmons, T.W. Scott, J.J. Farrar, and S.I. Hay, The global distribution and burden of dengue, Nature496(7446) (2013), pp. 504-507. doi: 10.1038/nature12060[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[5] H.E. Brown, C. Smith, and S. Lashway, Influence of the length of storage on Aedes aegypti (Diptera: Culicidae) egg viability, J. Med. Entomol. 54(2) (2017), pp. 489-491. [PubMed], [Web of Science ®], [Google Scholar]
[6] H. Delatte, G. Gimonneau, A. Triboire, and D. Fontenille, Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the Indian Ocean, J. Med. Entomol. 46(1) (2009), pp. 33-41. doi: 10.1603/033.046.0105[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[7] O. Diekmann, J. Heesterbeek, and J. Metz, On the definition and the computation of the basic reproduction ratio ##img####img####img##R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol. 28 (1990), pp. 365-382. doi: 10.1007/BF00178324[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 0726.92018
[8] G.L.C. Dutra, L.M.B. dos Santos, E.P. Caragata, From lab to field: The influence of urban landscapes on the invasive potential of Wolbachia in Brazilian Aedes aegypti mosquitoes. PLoS Neglect Trop. D 9(4) (2015), pp. e0003689. doi: 10.1371/journal.pntd.0003689[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[9] J. Edgerly and M. Marvier, To hatch or not to hatch? Egg hatch response to larval density and to larval contact in a treehole mosquito, Ecol. Entomol. 17 (1992), pp. 28-32. doi: 10.1111/j.1365-2311.1992.tb01035.x[Crossref], [Web of Science ®], [Google Scholar]
[10] B. Ermentrout, Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students (Vol. 14), Society for Industrial and Applied Mathematics, 2002. [Crossref], [Google Scholar] · Zbl 1003.68738
[11] J.-P. Françoise, Oscillations en biologie, Analyse qualitative et modèle, Springer, Berlin, 2005. [Crossref], [Google Scholar]
[12] G. Guzzetta, F. Montarsi, F.A. Baldacchino, M. Metz, G. Capelli, A. Rizzoli, A. Pugliese, R. Rosà, P. Poletti, and S. Merler, Potential risk of dengue and chikungunya outbreaks in northern Italy based on a population model of Aedes albopictus (Diptera: Culicidae), PLoS Neglect Trop D 10(6) (2016), pp. 1-21. doi: 10.1371/journal.pntd.0004762[Crossref], [Web of Science ®], [Google Scholar]
[13] A.A. Hoffmann, I. Iturbe-Ormaetxe, A.G. Callahan, B.L. Phillips, K. Billington, J.K. Axford, B.Montgomery, A.P. Turley, and S.L. O’Neill, Stability of the wMel Wolbachia infection following invasion into Aedes aegypti populations, PLoS Neglect Trop D 8(9) (2014), pp. 1-9. doi: 10.1371/journal.pntd.0003115[Crossref], [Web of Science ®], [Google Scholar]
[14] N. Honorio, C. Codeço, F. Alves, M. Magalhães, and R. Lourenço-de Oliveira, Temporal distribution of Aedes aegypti in different districts of Rio De Janeiro, Brazil, measured by two types of traps, J Med Entomol. 46(5) (2009), pp. 1001-1014. doi: 10.1603/033.046.0505[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[15] S. Juliano, G.S. Ribeiro, R. Maciel-de Freitas, M. Castro, C. Codeço, R. Lourenço-de Oliveira, and L. Lounibos, She’s a femme fatale: Low-density larval development produces good disease vectors, Memórias do Instituto Oswaldo Cruz 109(8) (2014), pp. 1070-1077. doi: 10.1590/0074-02760140455[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[16] J. Koiller, M.A. da Silva, M.O. Souza, C.T. Codeço, A. Iggidr, and G. Sallet, Aedes, Wolbachia and dengue. Project-Team MASAIE, 2014. [Google Scholar]
[17] M. Legros, M. Otero, V. Romeo Aznar, H. Solari, F. Gould, and A.L. Lloyd, Comparison of two detailed models of Aedes aegypti population dynamics, Ecosphere 7(10) (2016), p. e01515. doi: 10.1002/ecs2.1515[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[18] T.P. Livdahl, R.K. Koenekoop, and S.G. Futterweit, The complex hatching response of Aedes eggs to larval density, Ecol. Entomol. 9(4) (1984), pp. 437-442. doi: 10.1111/j.1365-2311.1984.tb00841.x[Crossref], [Web of Science ®], [Google Scholar]
[19] Maple 18. Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario. [Google Scholar]
[20] J. Marsden, M. McCracken, The Hopf Bifurcation and its Applications (Vol. 19), Springer Science & Business Media, 1976. [Crossref], [Google Scholar] · Zbl 0346.58007
[21] J. Meiss, Differential Dynamical Systems, SIAM, 2007. [Crossref], [Google Scholar] · Zbl 1144.34001
[22] J.D. Murray, Mathematical Biology. I. An Introduction, Interdisciplinary Applied Mathematics, Springer, New York, 2002. [Crossref], [Google Scholar]
[23] B. Perthame, Parabolic Equations in Biology, Springer International Publishing, Cham, 2015. [Crossref], [Google Scholar] · Zbl 1333.35001
[24] V.C. Soares-Pinheiro, W. Dasso-Pinheiro, J.M. Trindade-Bezerra, and W.P. Tadei, Eggs viability of Aedes aegypti Linnaeus (Diptera, Culicidae) under different environmental and storage conditions in Manaus, Amazonas, Brazil, Braz. J. Biol. 77(2) (2017), pp. 396-401. doi: 10.1590/1519-6984.19815[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[25] P. van den Driessche and J. Watmough, A simple SIS epidemic model with a backward bifurcation, J. Math. Biol. 40 (2000), pp. 525-540. doi: 10.1007/s002850000032[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 0961.92029
[26] D. Villela, C. Codeço, F. Figueiredo, G. Garcia, R. Maciel-de Freitas, and C. Struchiner, A Bayesian hierarchical model for estimation of abundance and spatial density of Aedes aegypti, PLoS ONE 10(4) (2015), p. e0123794. doi: 10.1371/journal.pone.0123794[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[27] H. Yang, Assessing the influence of quiescence eggs on the dynamics of mosquito Aedes aegypti, Appl. Math. 5 (2014), pp. 2696-2711. doi: 10.4236/am.2014.517257[Crossref], [Google Scholar]
[28] H. Yang, M. Macoris, K. Galvani, M. Andrighetti, and D. Wanderley, Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue, Epidemiol. Infect. 137 (2009), pp. 1188-1202. doi: 10.1017/S0950268809002040[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[29] H.L. Yeap, G. Rasic, N.M. Endersby-Harshman, S.F. Lee, E. Arguni, H.L. Nguyen, and A.A. Hoffmann, Mitochondrial DNA variants help monitor the dynamics of Wolbachia invasion into host populations, Heredity 116(3) (2016), pp. 265-276. doi: 10.1038/hdy.2015.97[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.