×

zbMATH — the first resource for mathematics

Characteristic, completion or matching timescales? An analysis of temporary boundaries in enzyme kinetics. (English) Zbl 1422.92070
Summary: Scaling analysis exploiting timescale separation has been one of the most important techniques in the quantitative analysis of nonlinear dynamical systems in mathematical and theoretical biology. In the case of enzyme catalyzed reactions, it is often overlooked that the characteristic timescales used for the scaling the rate equations are not ideal for determining when concentrations and reaction rates reach their maximum values. In this work, we first illustrate this point by considering the classic example of the single-enzyme, single-substrate Michaelis-Menten reaction mechanism. We then extend this analysis to a more complicated reaction mechanism, the auxiliary enzyme reaction, in which a substrate is converted to product in two sequential enzyme-catalyzed reactions. In this case, depending on the ordering of the relevant timescales, several dynamic regimes can emerge. In addition to the characteristic timescales for these regimes, we derive matching timescales that determine (approximately) when the transitions from transient to quasi-steady-state kinetics occurs. The approach presented here is applicable to a wide range of singular perturbation problems in nonlinear dynamical systems.

MSC:
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
34D15 Singular perturbations of ordinary differential equations
34E15 Singular perturbations, general theory for ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Berglund, N.; Gentz, B., Noise-Induced Phenomena in Slow-Fast Dynamical Systems, (2006), Springer-Verlag London, Ltd., London · Zbl 1098.37049
[2] Bersani, A. M.; Bersani, E.; Dell’Acqua, G.; Pedersen, M. G., New trends and perspectives in nonlinear intracellular dynamics: one century from Michaelis-Menten paper, Contin. Mech. Thermodyn., 27, 659-684, (2015) · Zbl 1341.92020
[3] Bersani, A. M.; Dell’Acqua, G., Is there anything left to say on enzyme kinetic constants and quasi-steady state approximation?, J. Math. Chem., 50, 335-344, (2012) · Zbl 1366.92055
[4] Bertram, R.; Rubin, J. E., Multi-timescale systems and fast-slow analysis, Math. Biosci., 287, 105-121, (2017) · Zbl 1377.92035
[5] Borghans, J. A.M.; De Boer, R. J.; Segel, L. A., Extending the quasi-steady state approximation by changing variables, Bull. Math. Biol., 58, 43-63, (1996) · Zbl 0866.92010
[6] Burke, M. A.; Maini, P. K.; Murray, J. D., Suicide substrate reaction-diffusion equations: varying the source, IMA J. Math. Appl. Med. Biol., 10, 97-114, (1993) · Zbl 0779.92010
[7] Burke, M. A.; Maini, P. K.; Murray, J. D., On the kinetics of suicide substrates, Biophys. Chem., 37, 81-90, (1990)
[8] Clark, A. R.; Stokes, Y. M.; Thompson, J. G., Estimation of glucose uptake by ovarian follicular cells, Ann. Biomed. Eng., 39, 2654-2667, (2011)
[9] Corless, R. M.; Gonnet, G. H.; Hare, D. E.G.; Jeffrey, D. J.; Knuth, D. E., On the Lambert W function, Adv. Comput. Math., 5, 329-359, (1996) · Zbl 0863.65008
[10] Eilertsen, J.; Schnell, S., A kinetic analysis of coupled (or auxiliary) enzyme reactions, Bull. Math. Biol., 80, 3154-3183, (2018) · Zbl 1404.92083
[11] Eilertsen, J.; Stroberg, W.; Schnell, S., A theory of reactant-stationary kinetics for a mechanism of zymogen activation, Biophys. Chem., 242, 34-44, (2018)
[12] Espenson, J. H., Chemical Kinetics and Reaction Mechanisms, (1995), McGraw-Hill: McGraw-Hill Singapore
[13] Feng, S.; Laketa, V.; Stein, F.; Rutkowska, A.; MacNamara, A.; Depner, S.; Klingmüller, U.; Saez-Rodriguez, J.; Schultz, C., A rapidly reversible chemical dimerizer system to study lipid signaling in living cells, Angew. Chem. Int. Ed., 53, 6720-6723, (2014)
[14] Fenichel, N., Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., 21, 193-226, (1971) · Zbl 0246.58015
[15] Fenichel, N., Geometric singular perturbation theory for ordinary differential equations, J. Diff. Eqs., 31, 53-98, (1979) · Zbl 0476.34034
[16] Frenzen, C. L.; Maini, P. K., Enzyme kinetics for a two-step enzymic reaction with comparable initial enzyme-substrate ratios, J. Math. Biol., 26, 689-703, (1988) · Zbl 0714.92006
[17] Gallagher, R., Enzymes make the world go ’round, Scientist, 18, 6, (2004)
[18] Gradšteĭn, I. S., Application of A. M. Lyapunov’s theory of stability to the theory of differential equations with small coefficients in the derivatives, Mat. Sbornik N. S., 32, 263-286, (1953)
[19] Hanson, S. M.; Schnell, S., Reactant stationary approximation in enzyme kinetics, J. Phys. Chem. A, 112, 8654-8658, (2008)
[20] Heineken, F. G.; Tsuchiya, H. M.; Aris, R., On the mathematical status of the pseudo-steady state hypothesis of biochemical kinetics, Math. Biosci., 1, 95-113, (1967)
[21] Holmes, M. H., Introduction to Perturbation Methods, (2013), Springer-Verlag: Springer-Verlag New York · Zbl 1270.34002
[22] Klonowski, W., Simplifying principles for chemical and enzyme reaction kinetics, Biophys. Chem., 18, 73-87, (1983)
[23] Kuehn, C., Multiple time scale dynamics, (2015), Springer-Verlag, New York · Zbl 1335.34001
[24] Letson, B.; Rubin, J. E.; Vo, T., Analysis of interacting local oscillation mechanisms in three-timescale systems, SIAM J. Appl. Math., 77, 1020-1046, (2017) · Zbl 1369.34078
[25] Lin, C. C.; Segel, L. A., Mathematics applied to deterministic problems in the natural sciences, (1988), Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA · Zbl 0664.00026
[26] Maini, P. K.; Woolley, T. E.; Baker, R. E.; Gaffney, E. A.; Lee, S. S., Turing’s model for biological pattern formation and the robustness problem, Interface Focus, 2, 487-496, (2012)
[27] Murugan, R., Theory on the rate equation of Michaelis-Menten type single-substrate enzyme catalyzed reactions, J. Math. Chem., 56, 508-556, (2018) · Zbl 1385.92024
[28] Nan, P.; Wang, Y.; Kirk, V.; Rubin, J. E., Understanding and distinguishing three-time-scale oscillations: case study in a coupled morris-lecar system, SIAM J. Appl. Dyn. Syst., 14, 1518-1557, (2015) · Zbl 1329.34094
[29] Nguyen, A. H.; Fraser, S., Geometrical picture of reaction in enzyme kinetics, J. Chem. Phys., 91, 186-193, (1989)
[30] Palsson, B. O., On the dynamics of the irreversible Michaelis-Menten reaction mechanism, Chem. Eng. Sci., 42, 447-458, (1987)
[31] Palsson, B. O.; Lightfoot, E. N., Mathematical modelling of dynamics and control in metabolic networks. I. On Michaelis-Menten kinetics, J. Theor. Biol., 111, 273-302, (1984)
[32] Palsson, B. O.; Palsson, H.; Lightfoot, E. N., Mathematical modelling of dynamics and control in metabolic networks. III. Linear reaction sequences, J. Theor. Biol., 113, 231-259, (1985)
[33] Pedersen, M. G.; Bersani, A. M.; Bersani, E., The total quasi-steady-state approximation for fully competitive enzyme reactions, Bull. Math. Biol., 69, 433-457, (2007) · Zbl 1133.92323
[34] Rice, O. K., Conditions for a steady state in chemical kinetics, J. Phys. Chem., 64, 1851-1857, (1960)
[35] Roussel, M. R.; Fraser, S. J., Geometry of the steady-state approximation: perturbation and accelerated convergence methods, J. Chem. Phys., 93, 1072-1081, (1990)
[36] Roussel, M. R.; Fraser, S. J., Accurate steady-state approximations: implications for kinetics experiments and mechanism, J. Phys. Chem., 95, 8762-8770, (1991)
[37] Schnell, S., Validity of the Michaelis-Menten equation - Steady-state, or reactant stationary assumption: that is the question, FEBS J., 281, 464-472, (2014)
[38] Schnell, S.; Maini, P. K., Enzyme kinetics at high enzyme concentration, Bull. Math. Biol., 62, 483-499, (2000) · Zbl 1323.92099
[39] Schnell, S.; Maini, P. K., Enzyme kinetics far from the standard quasi-steady-state and equilibrium approximations, Math. Comput. Modelling, 35, 137-144, (2002) · Zbl 0994.92024
[40] Schnell, S.; Maini, P. K., A century of enzyme kinetics. Reliability of the \(K_M\) and \(v_{\max}\) estimates, Comments Theor. Biol., 8, 169-187, (2003)
[41] Schnell, S.; Mendoza, C., Closed form solution for time-dependent enzyme kinetics, J. Theor. Biol., 187, 207-212, (1997)
[42] Segel, L. A., On the validity of the steady state assumption of enzyme kinetics, Bull. Math. Biol., 50, 579-593, (1988) · Zbl 0653.92006
[43] Segel, L. A.; Slemrod, M., The quasi-steady-state assumption: a case study in perturbation, SIAM Rev., 31, 446-477, (1989) · Zbl 0679.34066
[44] Shoffner, S. K.; Schnell, S., Approaches for the estimation of timescales in nonlinear dynamical systems: timescale separation in enzyme kinetics as a case study, Math. Biosci., 287, 122-129, (2017) · Zbl 1377.92039
[45] Son, K. J.; Shin, D.-S.; Kwa, T.; You, J.; Gao, Y.; Revzin, A., A microsystem integrating photodegradable hydrogel microstructures and reconfigurable microfluidics for single-cell analysis and retrieval, Lab Chip, 15, 637-641, (2015)
[46] Tikhonov, A., Systems of differential equations containing small parameters in their derivatives, Mat. Sb. (N.S.), 31, 575-586, (1952)
[47] Tzafriri, A.; Edelman, E., The total quasi-steady-state approximation is valid for reversible enzyme kinetics, J. Theor. Biol., 226, 303-313, (2004)
[48] Tzafriri, A. R., Michaelis-Menten kinetics at high enzyme concentrations, Bull. Math. Biol., 65, 1111-1129, (2003) · Zbl 1334.92185
[49] Vo, T.; Bertram, R.; Wechselberger, M., Multiple geometric viewpoints of mixed mode dynamics associated with pseudo-plateau bursting, SIAM J. Appl. Dyn. Syst., 12, 789-830, (2013) · Zbl 1295.37022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.