zbMATH — the first resource for mathematics

Primitive divisors of elliptic divisibility sequences over function fields with constant \(j\)-invariant. (English) Zbl 07202823
Summary: We prove an optimal Zsigmondy bound for elliptic divisibility sequences over function fields in case the \(j\)-invariant of the elliptic curve is constant.
In more detail, given an elliptic curve \(E\) with a point \(P\) of infinite order over a global field, the sequence \(D_1, D_2, \ldots\) of denominators of multiples \(P, 2P, \ldots\) of \(P\) is a strong divisibility sequence in the sense that \(\gcd( D_m, D_n) = D_{\gcd (m, n)}\). This is the genus-one analogue of the genus-zero Fibonacci, Lucas and Lehmer sequences.
A number \(N\) is called a Zsigmondy bound of the sequence if each term \(D_n\) with \(n > N\) presents a new prime factor. The optimal uniform Zsigmondy bound for the genus-zero sequences over Q is 30 by Bilu-Hanrot-Voutier [2], but finding such a bound remains an open problem in genus one, both over Q and over function fields.
We prove that the optimal Zsigmondy bound for ordinary elliptic divisibility sequences over function fields is 2 if the \(j\)-invariant is constant. In the supersingular case, we give a complete classification of which terms can and cannot have a new prime factor.
11G05 Elliptic curves over global fields
11B39 Fibonacci and Lucas numbers and polynomials and generalizations
14H52 Elliptic curves
11G07 Elliptic curves over local fields
11B83 Special sequences and polynomials
Full Text: DOI
[1] Akbary, A.; Yazdani, S., On the greatest prime factor of some divisibility sequences, (SCHOLAR—A Scientific Celebration Highlighting Open Lines of Arithmetic Research. SCHOLAR—A Scientific Celebration Highlighting Open Lines of Arithmetic Research, Contemp. Math., vol. 655 (2015), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 1-13 · Zbl 1394.11079
[2] Bilu, Y.; Hanrot, G.; Voutier, P. M., Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math., 539, 75-122 (2001), with an appendix by M. Mignotte · Zbl 0995.11010
[3] Bosch, S.; Lütkebohmert, W.; Raynaud, M., Néron Models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 21 (1990), Springer-Verlag: Springer-Verlag Berlin · Zbl 0705.14001
[4] Cheon, J. H.; Hahn, S. G., The orders of the reductions of a point in the Mordell-Weil group of an elliptic curve, Acta Arith., 88, 3, 219-222 (1999) · Zbl 0933.11029
[5] Conrad, B., Minimal models for elliptic curves (2015), preprint, available at
[6] Cornelissen, G.; Reynolds, J., The perfect power problem for elliptic curves over function fields, N.Y. J. Math., 22, 95-114 (2016) · Zbl 1409.11046
[7] Dokchitser, T.; Dokchitser, V., A remark on Tate’s algorithm and Kodaira types, Acta Arith., 160, 1, 95-100 (2013) · Zbl 1346.11036
[8] Everest, G.; Mclaren, G.; Ward, T., Primitive divisors of elliptic divisibility sequences, J. Number Theory, 118, 1, 71-89 (2006) · Zbl 1093.11038
[9] Everest, G.; Ingram, P.; Mahé, V.; Stevens, S., The uniform primality conjecture for elliptic curves, Acta Arith., 134, 2, 157-181 (2008) · Zbl 1246.11117
[10] Flatters, A.; Ward, T., A polynomial Zsigmondy theorem, J. Algebra, 343, 138-142 (2011) · Zbl 1257.11028
[11] Ghioca, D.; Hsia, L.-C.; Tucker, T., A variant of a theorem by Ailon-Rudnick for elliptic curves, Pac. J. Math., 295, 1, 1-15 (2018) · Zbl 1450.11061
[12] Hindry, M.; Silverman, J. H., The canonical height and integral points on elliptic curves, Invent. Math., 93, 2, 419-450 (1988) · Zbl 0657.14018
[13] Hone, A. N.W.; Swart, C., Integrality and the Laurent phenomenon for Somos 4 and Somos 5 sequences, Math. Proc. Camb. Philos. Soc., 145, 1, 65-85 (2008) · Zbl 1165.11018
[14] Ingram, P., Elliptic divisibility sequences over certain curves, J. Number Theory, 123, 2, 473-486 (2007) · Zbl 1170.11010
[15] Ingram, P.; Silverman, J. H., Uniform estimates for primitive divisors in elliptic divisibility sequences, (Number Theory, Analysis and Geometry (2012), Springer: Springer New York), 243-271 · Zbl 1276.11092
[16] Ingram, P.; Mahé, V.; Silverman, J. H.; Stange, K. E.; Streng, M., Algebraic divisibility sequences over function fields, J. Aust. Math. Soc., 92, 1, 99-126 (2012) · Zbl 1251.11008
[17] Jarvis, T.; Lang, W. E.; Rimmasch, G.; Rogers, J.; Summers, E. D.; Petrosyan, N., Classification of singular fibers on rational elliptic surfaces in characteristic three, Commun. Algebra, 33, 12, 4533-4566 (2005) · Zbl 1085.14033
[18] Katz, N. M., Travaux de Laumon, Astérisque, 4, 161-162, 105-132 (1988), Exp. No. 691 (1989), séminaire Bourbaki, Vol. 1987/88 · Zbl 0698.14014
[19] Katz, N. M.; Mazur, B., Arithmetic Moduli of Elliptic Curves, Annals of Mathematics Studies, vol. 108 (1985), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 0576.14026
[20] Liu, Q., Algebraic Geometry and Arithmetic Curves, Oxford Graduate Texts in Mathematics, vol. 6 (2002), Oxford University Press: Oxford University Press Oxford · Zbl 0996.14005
[21] Naskręcki, B., Divisibility sequences of polynomials and heights estimates, N.Y. J. Math., 22, 989-1020 (2016) · Zbl 1417.11110
[22] Oguiso, K.; Shioda, T., The Mordell-Weil lattice of a rational elliptic surface, Comment. Math. Univ. St. Pauli, 40, 1, 83-99 (1991) · Zbl 0757.14011
[23] Persson, U., Configurations of Kodaira fibers on rational elliptic surfaces, Math. Z., 205, 1, 1-47 (1990) · Zbl 0722.14021
[24] Shioda, T., On the Mordell-Weil lattices, Comment. Math. Univ. St. Pauli, 39, 2, 211-240 (1990) · Zbl 0725.14017
[25] Shioda, T.; Schütt, M., Elliptic surfaces, (Keum, J. H.; Kondō, S.; Konno, K.; Oguiso, K., Algebraic Geometry in East Asia - Seoul 2008. Algebraic Geometry in East Asia - Seoul 2008, Adv. Stud. Pure Math. (2010), Mathematical Society of Japan: Mathematical Society of Japan Tokyo), 51-160 · Zbl 1216.14036
[26] Silverman, J. H., Wieferich’s criterion and the abc-conjecture, J. Number Theory, 30, 2, 226-237 (1988) · Zbl 0654.10019
[27] Silverman, J. H., Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, vol. 151 (1994), Springer-Verlag: Springer-Verlag New York · Zbl 0911.14015
[28] Silverman, J. H., Common divisors of elliptic divisibility sequences over function fields, Manuscr. Math., 114, 4, 431-446 (2004) · Zbl 1128.11015
[29] Silverman, J. H., The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, vol. 106 (2009), Springer: Springer Dordrecht · Zbl 1194.11005
[30] Streng, M., Divisibility sequences for elliptic curves with complex multiplication, Algebra Number Theory, 2, 2, 183-208 (2008) · Zbl 1158.14029
[31] Szydlo, M., Flat regular models of elliptic schemes (1999), ProQuest LLC: ProQuest LLC Ann Arbor, MI, thesis (Ph.D.)-Harvard University
[32] Szydlo, M., Elliptic fibers over non-perfect residue fields, J. Number Theory, 104, 1, 75-99 (2004) · Zbl 1041.14001
[33] Zapponi, L., On the 1-pointed curves arising as étale covers of the affine line in positive characteristic, Math. Z., 258, 4, 711-727 (2008) · Zbl 1139.14024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.