×

A model for reactive porous transport during re-wetting of hardened concrete. (English) Zbl 1176.76139

Summary: A mathematical model is developed that captures the transport of liquid water in hardened concrete, as well as the chemical reactions that occur between the imbibed water and the residual calcium-silicate compounds residing in the porous concrete matrix. The main hypothesis in this model is that the reaction product—calcium-silicate hydrate gel—clogs the pores within the concrete, thereby hindering water transport. Numerical simulations are employed to determine the sensitivity of the model solution to changes in various physical parameters, and compare to experimental results available in the literature.

MSC:

76V05 Reaction effects in flows
76S05 Flows in porous media; filtration; seepage
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] WBCSD (2002) The cement sustainability initiative: our agenda for action. World Business Council for Sustainable Development, Available at http://www.wbcsdcement.org
[2] Bažant ZP, Najjar LJ (1971) Drying of concrete as a nonlinear diffusion problem. Cement Concr Res 1: 461–473 · doi:10.1016/0008-8846(71)90054-8
[3] Billingham J, Francis DTI, King AC, Harrisson AM (2005) A multiphase model for the early stages of the hydration of retarded oilwell cement. J Eng Math 53: 99–112 · Zbl 1124.76321 · doi:10.1007/s10665-005-9003-4
[4] Preece SJ, Billingham J, King AC (2001) On the initial stages of cement hydration. J Eng Math 40: 43–58 · Zbl 1017.76088 · doi:10.1023/A:1017533810329
[5] Bary B, Sellier A (2004) Coupled moisture–carbon dioxide–calcium transfer model for carbonation of concrete. Cement Concr Res 34: 1859–1872 · doi:10.1016/j.cemconres.2004.01.025
[6] Papadakis VG, Vayenas CG, Fardis MN (1989) A reaction engineering approach to the problem of concrete carbonation. AIChE J 35(10): 1639–1650 · doi:10.1002/aic.690351008
[7] Meier SA, Peter MA, Muntean A, Böhm M (2007) Dynamics of the internal reaction layer arising during carbonation of concrete. Chem Eng Sci 62: 1125–1137 · doi:10.1016/j.ces.2006.11.014
[8] Ferretti D, Bažant ZP (2006) Stability of ancient masonry towers: moisture diffusion, carbonation and size effect. Cement Concr Res 36: 1379–1388 · doi:10.1016/j.cemconres.2006.03.013
[9] Hall C, Hoff WD, Taylor SC, Wilson MA, Yoon B-G, Reinhardt H-W, Sosoro M, Meredith P, Donald AM (1995) Water anomaly in capillary liquid absorption by cement-based materials. J Mater Sci Lett 14: 1178–1181 · doi:10.1007/BF00291799
[10] Taylor SC, Hoff WD, Wilson MA, Green KM (1999) Anomalous water transport properties of Portland and blended cement-based materials. J Mater Sci Lett 18(23): 1925–1927 · doi:10.1023/A:1006677014070
[11] Bentur A (2002) Cementitious materials–Nine millennia and a new century: past, present, and future. J Mater Civil Eng 14(1): 2–22 · doi:10.1061/(ASCE)0899-1561(2002)14:1(2)
[12] Barrita P (2002) Curing of high-performance concrete in hot dry climates studied using magnetic resonance imaging. Ph.D. thesis, University of New Brunswick, Fredericton, NB
[13] Barrita P, Balcom BJ, Bremner TW, MacMillan MB, Langley WS (2004) Moisture distribution in drying ordinary and high performance concrete cured in a simulated hot dry climate. Mater Struct 37: 522–531
[14] Hall C (2007) Anomalous diffusion in unsaturated flow: fact or fiction?. Cement Concr Res 37: 378–385 · doi:10.1016/j.cemconres.2006.10.004
[15] Küntz M, Lavallée P (2001) Experimental evidence and theoretical analysis of anomalous diffusion during water infiltration in porous building materials. J Phys D 34: 2547–2554 · doi:10.1088/0022-3727/34/16/322
[16] Lockington DA, Parlange J-Y (2003) Anomalous water absorption in porous materials. J Phys D 36: 760–767 · doi:10.1088/0022-3727/36/6/320
[17] Saetta AV, Schrefler BA, Vitaliani RV (1995) 2-D model for carbonation and moisture/heat flow in porous materials. Cement Concr Res 25(8): 703–1712 · doi:10.1016/0008-8846(95)00166-2
[18] Bentz DP (1999) Effects of cement PSD on porosity percolation and self-desiccation. In: Persson B, Fagerlund G (eds) Self-desiccation and its importance in concrete technology II. Lund University, pp. 127–134
[19] Clement TP, Hooker BS, Skeen RS (1996) Macroscopic models for predicting changes in saturated porous media properties cause by microbial growth. Ground Water 34(5): 934–942 · doi:10.1111/j.1745-6584.1996.tb02088.x
[20] Lea FM (1970) The chemistry of cement and concrete. 3rd edn. Edwin Arnold, Glasgow
[21] Bentz DP (1995) A three-dimensional cement hydration and microstructure program. I. Hydration rate, heat of hydration and chemical shrinkage. Report No. NISTIR 5756, Building and Fire Research Laboratory, National Institute of Standards and Technology, Gaithersburg, MD
[22] Tzschichholz F, Zanni H (2001) Global hydration kinetics of tricalcium silicate cement. Phys Rev E 64: 016115 · doi:10.1103/PhysRevE.64.016115
[23] Bentz DP (2006) Influence of water-to-cement ratio on hydration kinetics: simple models based on spatial considerations. Cement Concr Res 36(2): 238–244 · doi:10.1016/j.cemconres.2005.04.014
[24] Hansen TC (1986) Physical structure of hardened cement paste. A classical approach. Matér Constr 19(114): 423–436
[25] Grutzeck MW (1999) A new model for the formation of calcium silicate hydrate (C-S-H). Mater Res Innov 3: 160–170 · doi:10.1007/s100190050143
[26] Persson B (1997) Self-desiccation and its importance in concrete technology. Mater Struct 30: 293–305 · doi:10.1007/BF02486354
[27] Bear J (1988) Dynamics of fluids in porous media. Dover, New York · Zbl 1191.76002
[28] Chapwanya M, O’Brien SBG, Williams JF (2008) A 1D bio-clogging model in a phreatic aquifer (In preparation)
[29] Kildsgaard J, Engesgaard P (2001) Numerical analysis of biological clogging in two-dimensional sand box experiments. J Contam Hydrol 50: 261–285 · doi:10.1016/S0169-7722(01)00109-7
[30] Delmi MMY, Aït-Mokhtar A, Amiri O (2006) Modelling the coupled evolution of hydration and porosity of cement-based materials. Constr Build Mater 20: 504–514 · doi:10.1016/j.conbuildmat.2004.12.004
[31] Birchall JD, Howard AJ, Bailey JE (1978) On the hydration of Portland cement. Proc Roy Soc Lond A 360: 445–453 · doi:10.1098/rspa.1978.0078
[32] Hall C, Hoff WD, Skeldon M (1983) The sorptivity of brick: dependence on the initial water content. J Phys D 16: 1875–1880 · doi:10.1088/0022-3727/16/10/011
[33] Pel L (1995) Moisture transport in porous building materials. Ph.D. thesis, Technische Universiteit Eindhoven
[34] Mainguy M, Tognazzi C, Torrenti J-M, Adenot F (2000) Modelling of leaching in pure cement paste and mortar. Cement Concr Res 30: 83–90 · doi:10.1016/S0008-8846(99)00208-2
[35] Lockington D, Parlange J-Y, Dux P (1999) Sorptivity and the estimation of water penetration into unsaturated concrete. Mater Struct 32: 342–347 · doi:10.1007/BF02479625
[36] Allen AJ, Thomas JJ, Jennings HM (2007) Composition and density of nanoscale calcium-silicate-hydrate in cement. Nat Mater 6: 311–316 · doi:10.1038/nmat1871
[37] Tennis PD, Jennings HM (2000) A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes. Cement Concr Res 30: 855–863 · doi:10.1016/S0008-8846(00)00257-X
[38] Kumar R, Bhattacharjee B (2003) Porosity, pore size distribution and in situ strength of concrete. Cement Concr Res 33: 155–164 · doi:10.1016/S0008-8846(02)00942-0
[39] Farrington D, Alberty RA (1966) Physical chemistry. Wiley, New York
[40] Garboczi EJ, Bentz DP (1992) Computer simulation of the diffusivity of cement-based materials. J Mater Sci 27: 2083–2092 · doi:10.1007/BF01117921
[41] Jennings HM, Thomas JJ, Gevrenov JS, Constantinides G, Ulm F-J (2007) A multi-technique investigation of the nanoporosity of cement paste. Cement Concr Res 37: 329–336 · doi:10.1016/j.cemconres.2006.03.021
[42] Thomas JJ, Jennings HM (1999) Effects of D 2 O and mixing on the early hydration kinetics of tricalcium silicate. Chem Mater 11: 1907–1914 · doi:10.1021/cm9900857
[43] Akita H, Fujiwara T, Ozaka Y (1997) A practical procedure for the analysis of moisture transfer within concrete due to drying. Mag Concr Res 49(179): 129–137 · doi:10.1680/macr.1997.49.179.129
[44] Beaudoin JJ (1999) Why engineers need materials science. Concr Int 21(8): 86–89
[45] Hillel D (1998) Environmental soil physics. Academic Press, London
[46] Kool JB, Parker JC (1987) Development and evaluation of closed-form expressions for hysteretic soil hydraulic properties. Water Resour Res 23(1): 104–114 · doi:10.1029/WR023i001p00105
[47] Gray WG, Miller CT (2004) Examination of Darcy’s law for flow in porous media with variable porosity. Environ Sci Technol 38: 5895–5901 · doi:10.1021/es049728w
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.