×

zbMATH — the first resource for mathematics

Quermass-interaction process with convex compact grains. (English) Zbl 1413.60005
Summary: The paper concerns an extension of the random disc Quermass-interaction process, i.e., the model of discs with mutual interactions, to the process of interacting objects of more general shapes. Based on the results for the random disc process and the process with polygonal grains, theoretical results for the generalized process are derived. Further, a simulation method, its advantages and the corresponding complications are described, and some examples are introduced. Finally, a short comparison to the random disc process is given.
MSC:
60D05 Geometric probability and stochastic geometry
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
Software:
R
PDF BibTeX XML Cite
Full Text: DOI Link
References:
[1] H. Altendorf, F. Latourte, D. Jeulin, M. Faessel, L. Saintyant: 3D reconstruction of a multiscale microstructure by anisotropic tessellation models. Image Anal. Stereol. 33 (2014), 121–130. · doi:10.5566/ias.v33.p121-130
[2] S. N. Chiu, D. Stoyan, W. S. Kendall, J. Mecke: Stochastic Geometry and Its Applications. Wiley Series in Probability and Statistics, John Wiley & Sons, Chichester, 2013. · Zbl 1291.60005
[3] D. Dereudre: Existence of Quermass processes for non locally stable interaction and non bounded convex grains. Adv. Appl. Probab. 41 (2009), 664–681. · Zbl 1179.60003 · doi:10.1017/S0001867800003517
[4] D. Dereudre, F. Lavaňcier, K. Stanková Helisová: Estimation of the intensity parameter of the germ-grain Quermass-interaction model when the number of germs is not observed. Scand. J. Stat. 41 (2014), 809–829. · Zbl 1309.60004 · doi:10.1111/sjos.12064
[5] P. J. Diggle: Binary mosaics and the spatial pattern of heather. Biometrics 37 (1981), 531–539. · doi:10.2307/2530566
[6] C. J. Geyer, J. Møller: Simulation procedures and likelihood inference for spatial point processes. Scand. J. Stat. 21 (1994), 359–373. · Zbl 0809.62089
[7] K. Helisová: Modeling, statistical analyses and simulations of random items and behavior on material surfaces. Supplemental UE: TMS 2014 Conference Proceedings, San Diego, 2014, pp. 461–468.
[8] P. Hermann, T. Mrkvicka, T. Mattfeldt, M. Minárová, K. Helisová, O. Nicolis, F. Wartner, M. Stehlík: Fractal and stochastic geometry inference for breast cancer: a case study with random fractal models and Quermass-interaction process. Stat. Med. 34 (2015), 2636–2661. · doi:10.1002/sim.6497
[9] W. S. Kendall, M. N. M. van Lieshout, A. J. Baddeley: Quermass-interaction processes: conditions for stability. Adv. Appl. Probab. 31 (1999), 315–342. · Zbl 0962.60026 · doi:10.1017/S0001867800009137
[10] M. Klazar: Generalised Davenport-Schinzel sequences: results, problems and applications. Integers: The Electronic Journal of Combinatorial Number Theory 2 (2002), A11. · Zbl 1004.05004
[11] I. Molchanov: Theory of Random Sets. Probability and Its Applications, Springer, London, 2005.
[12] J. Møller, K. Helisová: Power diagrams and interaction processes for unions of discs. Adv. Appl. Probab. 40 (2008), 321–347. · Zbl 1146.60322 · doi:10.1017/S0001867800002548
[13] J. Møller, K. Helisová: Likelihood inference for unions of interacting discs. Scand. J. Stat. 37 (2010), 365–381. · Zbl 1226.60016 · doi:10.1111/j.1467-9469.2009.00660.x
[14] J. Møller, R. P. Waagepetersen: Statistical Inference and Simulation for Spatial Point Processes. Monographs on Statistics and Applied Probability 100, Chapman and Hall/CRC, Boca Raton, 2004.
[15] T. Mrkvička, T. Mattfeldt: Testing histological images of mammary tissues on compatibility with the Boolean model of random sets. Image Anal. Stereol. 30 (2011), 11–18. · doi:10.5566/ias.v30.p11-18
[16] T. Mrkvička, J. Rataj: On the estimation of intrinsic volume densities of stationary random closed sets. Stochastic Processes Appl. 118 (2008), 213–231. · Zbl 1148.62023 · doi:10.1016/j.spa.2007.04.004
[17] J. Ohser, F. Mücklich: Statistical Analysis of Microstructures in Materials Science. Wiley Series in Statistics in Practice, Wiley, Chichester, 2000. · Zbl 0960.62129
[18] W. K. Pratt: Digital Image Processing. Wiley & Sons, New York, 2001.
[19] R Development Core Team: R: A language and environment for statistical computing. R Found Stat Comp, Vienna. http://www. R-project. org/, 2010.
[20] K. Staňková Helisová, J. Staněk: Dimension reduction in extended Quermass-interaction process. Methodol. Comput. Appl. Probab. 16 (2014), 355–368. · Zbl 1319.60020 · doi:10.1007/s11009-013-9343-x
[21] M. Zikmundová, K. Staňková Helisová, V. Beneš: Spatio-temporal model for a random set given by a union of interacting discs. Methodol. Comput. Appl. Probab. 14 (2012), 883–894. · Zbl 1259.60013 · doi:10.1007/s11009-012-9287-6
[22] M. Zikmundová, K. Staňková Helisová, V. Beneš: On the use of particle Markov chain Monte Carlo in parameter estimation of space-time interacting discs. Methodol. Comput. Appl. Probab. 16 (2014), 451–463. · Zbl 1319.60022 · doi:10.1007/s11009-013-9367-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.