×

Chaos and hyperchaos in coupled antiphase driven Toda oscillators. (English) Zbl 1398.37031

Summary: The dynamics of two coupled antiphase driven Toda oscillators is studied. We demonstrate three different routes of transition to chaotic dynamics associated with different bifurcations of periodic and quasi-periodic regimes. As a result of these, two types of chaotic dynamics with one and two positive Lyapunov exponents are observed. We argue that the results obtained are robust as they can exist in a wide range of the system parameters.

MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
70K55 Transition to stochasticity (chaotic behavior) for nonlinear problems in mechanics

Software:

XPPAUT
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Rössler, O.E., An equation for hyperchaos, Phys. Lett. A, 71, 155-157, (1979) · Zbl 0996.37502 · doi:10.1016/0375-9601(79)90150-6
[2] Baier, G.; Klein, M., Maximum hyperchaos in generalized Hénon maps, Phys. Lett. A, 151, 281-284, (1990) · doi:10.1016/0375-9601(90)90283-T
[3] Stefański, K., Modelling chaos and hyperchaos with 3D maps, Chaos Solitons Fractals, 9, 83-93, (1998) · Zbl 0934.37033 · doi:10.1016/S0960-0779(97)00051-9
[4] Reiterer, P.; Lainscsek, C.; Schürrer, F.; Letellier, Ch.; Maquet, J., A nine-dimensional Lorenz system to study high-dimensional chaos, J. Phys. A, 31, 7121-7139, (1998) · Zbl 0949.76080 · doi:10.1088/0305-4470/31/34/015
[5] Yanchuk, S.; Kapitaniak, T., Chaos-hyperchaos transition in coupled Rössler systems, Phys. Lett. A, 290, 139-144, (2001) · Zbl 1023.37018 · doi:10.1016/S0375-9601(01)00651-X
[6] Yanchuk, S.; Kapitaniak, T., Symmetry-increasing bifurctaion as a predictor of a chaos-hyperchaos transition in coupled systems, (2001) · Zbl 1023.37018
[7] Kozłowski, J.; Parlitz, U.; Lauterborn, W., Bifurcation analysis of two coupled periodically driven Duffing oscillators, Phys. Rev. E, 51, 1861-1967, (1995) · doi:10.1103/PhysRevE.51.1861
[8] Perlikowski, P.; Yanchuk, S.; Wolfrum, M.; Stefanski, A.; Mosiolek, P.; Kapitaniak, T., Routes to complex dynamics in a ring of unidirectionally coupled systems, (2010)
[9] Stoop, R.; Peinke, J.; Parisi, J.; Röhricht, B.; Huebener, R.P., A p-ge semiconductor experiment showing chaos and hyperchaos, Phys. D, 35, 425-435, (1989) · doi:10.1016/0167-2789(89)90078-X
[10] Kapitaniak, T.; Chua, L.O., Hyperchaotic attractors of unidirectionally-coupled chua’s circuits, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 4, 477-482, (1994) · Zbl 0813.58037 · doi:10.1142/S0218127494000356
[11] Kapitaniak, T.; Chua, L.O.; Zhong, G.-Q., Experimental hyperchaos in coupled chua’s circuits, IEEE Trans. Circuits Syst. I, 41, 499-503, (1994) · doi:10.1109/81.298367
[12] Geist, K.; Lauterborn, W., The nonlinear dynamics of the damped and driven Toda chain: 1. energy bifurcation diagrams, Phys. D, 31, 103-116, (1988) · Zbl 0709.34045 · doi:10.1016/0167-2789(88)90016-4
[13] Geist, K.; Lauterborn, W., The nonlinear dynamics of the damped and driven Toda chain: 2. Fourier and Lyapunov analysis of tori, Phys. D, 41, 1-25, (1990) · Zbl 0721.34050 · doi:10.1016/0167-2789(90)90025-K
[14] Geist, K.; Lauterborn, W., The nonlinear dynamics of the damped and driven Toda chain: 3. classification of the nonlinear resonances and local bifurcations, Phys. D, 52, 551-559, (1991) · Zbl 0736.34046 · doi:10.1016/0167-2789(91)90145-Y
[15] Pikovsky, A., Rosenblum, M., and Kurths, J., Synchronization: A Universal Concept in Nonlinear Sciences, New York: Cambridge Univ. Press, 2001. · Zbl 0993.37002 · doi:10.1017/CBO9780511755743
[16] Kuznetsov, A.P.; Seleznev, E.P.; Stankevich, N. V., Nonautonomous dynamics of coupled van der Pol oscillators in the regime of amplitude death, Commun. Nonlinear Sci. Numer. Simul., 17, 3740-3746, (2012) · Zbl 1351.34039 · doi:10.1016/j.cnsns.2012.01.019
[17] Kuznetsov, A.P.; Sedova, Yu.V., Coupled systems with hyperchaos and quasiperiodicity, J. Appl. Nonlinear Dyn., 5, 161-167, (2016) · doi:10.5890/JAND.2016.06.003
[18] Toda, M., Studies of a non-linear lattice, Phys. Rep., 18C, 1-123, (1975) · doi:10.1016/0370-1573(75)90018-6
[19] Oppo, G. I.; Politi, A., Toda potential in laser equations, Z. Phys. B, 59, 111-115, (1985) · doi:10.1007/BF01325388
[20] Kouznetsov, D.; Bisson, J.-F.; Li, J.; Ueda, K., Self-pulsing laser as oscillator Toda: approximations through elementary functions, J. Phys. A, 40, 2107-2124, (2007) · Zbl 1113.81140 · doi:10.1088/1751-8113/40/9/016
[21] Ermentrout, G.B., Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students, Software, Environments, and Tools, vol. 14, Philadelphia, Pa.: SIAM, 2002. · Zbl 1003.68738 · doi:10.1137/1.9780898718195
[22] Benettin, G.; Galgani, L.; Giorgilli, A.; Strelcyn, J.-M., Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them: P. 1: theory, Meccanica, 15, 9-20, (1980) · Zbl 0488.70015 · doi:10.1007/BF02128236
[23] Kurz, Th.; Lauterborn, W., Bifurcation structure of the Toda oscillator, Phys. Rev. A (3), 37, 1029-1031, (1988) · doi:10.1103/PhysRevA.37.1029
[24] Astakhov, V.V.; Bezruchko, B.P.; Kuznetsov, S.P.; Seleznev, E.P., Onset of quasiperiodic motions in a system of dissipatively coupled nonlinear oscillators driven by a periodic external force, Sov. Tech. Phys. Lett., 14, 16-18, (1988)
[25] Vitolo, R.; Broer, H.; Simó, C., Quasi-periodic bifurcations of invariant circles in low-dimensional dissipative dynamical systems, Regul. Chaotic Dyn., 16, 154-184, (2011) · Zbl 1225.37087 · doi:10.1134/S1560354711010060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.