zbMATH — the first resource for mathematics

Lie nilpotency indices of modular group algebras. (English) Zbl 1197.16030
Let \(R\) be an associative algebra with identity. View \(R\) as a Lie algebra under commutation: \([a,b]=ab-ba\). Define the series \(\{R^{(n)}\}_{n\geq 1}\) (resp. \(\{R^{[n]}\}_{n\geq 1}\)) of two-sided ideals in \(R\) by setting \(R^{[1]}=R^{(1)}=R\) and for \(n\geq 0\), \(R^{(n+1)}\) to be the two-sided ideal of \(R\) generated by all elements \([a,b]\) with \(a\in R\), \(b\in R^{(n)}\) (resp. \(R^{[n+1]}\) to be the two-sided ideal generated by all left normed Lie commutators \([a_1,a_2,\dots,a_{n+1}]\).)
Let \(KG\) be the group algebra of a group \(G\) over a field \(K\) of positive characteristic. Let \(t^L(KG)\) (resp. \(t_L(KG)\)) denote the least integer \(n\), if it exists, such that \(KG^{(n)}=0\) (resp. \(KG^{[n]}=0\)). It is known that \(KG\) is Lie nilpotent, i.e., \(KG^{[n]}=0\) for some integer \(n\), if and only if \(KG^{(m)}=0\) for some integer \(m\), and \(t_L(KG)\leq t^L(KG)\leq |G'|+1\), where \(G'\) is the derived subgroup of \(G\). The precise value of \(t^L(KG)\) can be given in terms of the indices \([D_{(n+1)}(G):D_{(n)}(G)]\), where \(D_{(i)}(G)=G\cap (1+KG^{(i)})\), \(i\geq 1\).
Continuing the work in [V. Bovdi, Sci. Math. Jpn. 65, No. 2, 267-271 (2007; Zbl 1130.16016), V. Bovdi, T. Juhász, E. Spinelli, Algebr. Represent. Theory 9, No. 3, 259-266 (2006; Zbl 1115.16012), V. Bovdi, E. Spinelli, Publ. Math. 65, No. 1-2, 243-252 (2004; Zbl 1070.16026), A. Shalev, Arch. Math. 60, No. 2, 136-145 (1993; Zbl 0818.16025)], where the class of groups \(G\) for which the indices \(t^L(KG)\) (\(t_L(KG)\)) are maximal or almost maximal has been characterized, the authors of the present paper characterize the groups \(G\) for which the Lie nilpotency index \(t^L(KG)\) (or \(t_L(KG)\)) is the next highest possible.

16S34 Group rings
17B30 Solvable, nilpotent (super)algebras
20C07 Group rings of infinite groups and their modules (group-theoretic aspects)
16W10 Rings with involution; Lie, Jordan and other nonassociative structures
Full Text: DOI Link
[1] DOI: 10.1112/blms/24.1.68 · Zbl 0777.20004 · doi:10.1112/blms/24.1.68
[2] Bovdi A. A., Mat. Sb. N.S. 171 pp 154–
[3] DOI: 10.1006/jabr.1998.7617 · Zbl 0936.16028 · doi:10.1006/jabr.1998.7617
[4] Bovdi V., Sci. Math. Jpn. 65 pp 267–
[5] DOI: 10.1007/s10468-006-9022-5 · Zbl 1115.16012 · doi:10.1007/s10468-006-9022-5
[6] Bovdi V., Publ. Math. Debrecen 65 pp 243–
[7] Burnside W., Proc. London Math. Soc. 11 pp 225–
[8] DOI: 10.4153/CMB-1992-025-0 · Zbl 0801.16019 · doi:10.4153/CMB-1992-025-0
[9] DOI: 10.1016/0021-8693(83)90217-X · Zbl 0514.16024 · doi:10.1016/0021-8693(83)90217-X
[10] DOI: 10.1007/978-3-642-64981-3 · Zbl 0217.07201 · doi:10.1007/978-3-642-64981-3
[11] Khripta I. I., Mat. Zametki 11 pp 191–
[12] Passi I. B. S., Lecture Notes in Mathematics 715, in: Group Rings and Their Augmentation Ideals (1979) · Zbl 0405.20007 · doi:10.1007/BFb0067186
[13] DOI: 10.4153/CJM-1973-076-4 · Zbl 0266.16011 · doi:10.4153/CJM-1973-076-4
[14] Shalev A., J. London Math. Soc. (Ser. 2) 43 pp 23–
[15] DOI: 10.1007/BF01199099 · Zbl 0818.16025 · doi:10.1007/BF01199099
[16] DOI: 10.1017/S0004972700030409 · Zbl 0746.16021 · doi:10.1017/S0004972700030409
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.