×

Computing the first eigenpair for problems with variable exponents. (English) Zbl 1282.65143

Summary: We compute the first eigenpair for variable exponent eigenvalue problems. We compare the homogeneous definition of the first eigenvalue with previous nonhomogeneous notions in the literature. We also highlight the symmetry-breaking phenomena.

MSC:

65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35P15 Estimates of eigenvalues in context of PDEs
35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs

Software:

FreeFem++
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Acerbi E., Mingione G.: Gradient estimates for the p(x)-Laplacean system. J. Reine Angew. Math. 584, 117–148 (2005) · Zbl 1093.76003 · doi:10.1515/crll.2005.2005.584.117
[2] Biezuner R.J., Brown J., Ercole G., Martins E.M.: Computing the first eigenpair of the p-Laplacian via inverse itaration of sublinear supersolutions. J. Sci. Comput. 52, 180–201 (2012) · Zbl 1255.65205 · doi:10.1007/s10915-011-9540-0
[3] L. Diening, P. Harjulehto, P. Hästö and M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Math. 2017, Springer, Heidelberg, 2011. · Zbl 1222.46002
[4] X. Fan and D. Zhao, On the spaces L p (x)({\(\Omega\)}) and W m, p (x) ({\(\Omega\)}). J. Math. Anal. Appl. 263 (2001), 424–446.
[5] M. Hein and T. Bühler, An inverse power method for nonlinear eigenproblems with applications in 1-spectral clustering and sparse PCA. In: Proc. Neural Information Processing Systems (NIPS), 2010, 847–855.
[6] X. Fan, Q. Zhang and D. Zhao, Eigenvalues of p(x)-Laplacian Dirichlet problem. J. Math. Anal. Appl. 302 (2005), 306–317. · Zbl 1072.35138
[7] G. Franzina and P. Lindqvist, An eigenvalue problem with variable exponents. Nonlinear Anal. 85 (2013), 1–16. · Zbl 1278.35169
[8] L. Friedlander, Asymptotic behavior of the eigenvalues of the p-Laplacian. Comm. Partial Differential Equations 14 (1989), 1059–1069. · Zbl 0704.35108
[9] P. Harjulehto, P. Hästö, V. Latvala and O. Toivanen, The strong minimum principle for quasisuperminimizers of non-standard growth. Ann. Inst. H. Poincaré Anal. Non Linéaire 28 (2011), 731–742. · Zbl 1251.49028
[10] F. Hecht, FreeFem++ Documentation. 3rd ed., Lab Jacques-Louis Lions, Université Pierre et Marie Curie, 2013.
[11] J. R. Kuttler and V. G. Sigillito, Eigenvalues of the Laplacian in two dimensions. SIAM Rev. 26 (1984), 163–193. · Zbl 0574.65116
[12] P. Lindqvist, A nonlinear eigenvalue problem. In: Topics in Mathematical Analysis, Ser. Anal. Appl. Comput. 3, World Sci. Publ., Hackensack, NJ, 2008, 175–203. · Zbl 1160.35058
[13] P. Lindqvist, On the equation div $${(|\(\backslash\)nabla u|\^{p-2}\(\backslash\)nabla u) + \(\backslash\)lambda |u|\^{p-2}u = 0}$$ ( | u | p - 2 u ) + {\(\lambda\)} | u | p - 2 u = 0 . Proc. Amer. Math. Soc. 109 (1990), 157–164.
[14] L. Montoro, B. Sciunzi and M. Squassina, Symmetry results for the p(x)-Laplacian equation. Adv. Nonlinear Anal. 2 (2013), 43–64. · Zbl 1273.31008
[15] K. Perera and M. Squassina, Asymptotic behavior of the eigenvalues of the p(x)-Laplacian. Preprint, arXiv:1303.2295 [math.AP], 2013.
[16] S. Sakaguchi, Concavity properties of solutions to some degenerate quasilinear elliptic Dirichlet equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 14 (1987), 403–421. · Zbl 0665.35025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.