×

Extension of non-linear beam models with deformable cross sections. (English) Zbl 1336.74040

Summary: Geometrically exact beam theory is extended to allow distortion of the cross section. We present an appropriate set of cross-section basis functions and provide physical insight to the cross-sectional distortion from linear elastostatics. The beam formulation in terms of material (back-rotated) beam internal force resultants and work-conjugate kinematic quantities emerges naturally from the material description of virtual work of constrained finite elasticity. The inclusion of cross-sectional deformation allows straightforward application of three-dimensional constitutive laws in the beam formulation. Beam counterparts of applied loads are expressed in terms of the original three-dimensional data. Special attention is paid to the treatment of the applied stress, keeping in mind applications such as hydrogel actuators under environmental stimuli or devices made of electroactive polymers. Numerical comparisons show the ability of the beam model to reproduce finite elasticity results with good efficiency.

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74S05 Finite element methods applied to problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Altenbach J, Altenbach H, Matzdorf V (1994) A generalized Vlasov theory for thin-walled composite beam structures. Mech Compos Mater 30(1):43-54 · Zbl 0820.73058 · doi:10.1007/BF00612733
[2] Antman S (1974) Kirchhoff’s problem for nonlinearly elastic rods. Q Appl Math 32(3):221-240 · Zbl 0302.73031
[3] Antman S (1991) Nonlinear problems of elasticity, applied mathematical sciences, vol 107, 2nd edn. Springer, New York
[4] Antman S, Warner W (1966) Dynamical theory of hyperelastic rods. Arch Ration Mech Anal 23(2):135-162 · doi:10.1007/BF00251729
[5] Argyris J (1982) An excursion into large rotations. Comput Meth Appl Mech Eng 32(1-3):85-155 · Zbl 0505.73064 · doi:10.1016/0045-7825(82)90069-X
[6] Auricchio F, Carotenuto P, Reali A (2008) On the geometrically exact beam model: a consistent, effective and simple derivation from three-dimensional finite-elasticity. Int J Solids Struct 45(17):4766-4781 · Zbl 1169.74456 · doi:10.1016/j.ijsolstr.2008.04.015
[7] Bar-Cohen Y (2001) Electroactive polymer (EAP) actuators as artificial muscles—reality, potential and challenges, vol PM98, 2nd edn. SPIE Press, Bellingham, WA
[8] Butz A, Klinkel S, Wagner W (2008) A geometrically and materially non-linear piezoelectric three-dimensional-beam finite element formulation including warping effects. Int J Numer Methods Eng 76(5):601-635 · Zbl 1195.74164 · doi:10.1002/nme.2320
[9] Cardona A, Geradin M (1988) A beam finite-element non-linear theory with finite rotations. Int J Numer Methods Eng 26(11):2403-2438 · Zbl 0662.73049 · doi:10.1002/nme.1620261105
[10] Ciarlet P (1988) Mathematical elasticity, volume I: three-dimensional elasticity. North-Holland, Amsterdam · Zbl 0648.73014
[11] Cohen H (1966) A non-linear theory of elastic directed curves. Int J Eng Sci 4(5):511-524 · doi:10.1016/0020-7225(66)90013-9
[12] Cosserat E, Cosserat F (1909) Théorie des Corps déformables. Traite de Physique, Paris · JFM 40.0862.02
[13] Dabrowski R (1970) Curved thin-walled girders: theory and analysis. Cement and Concrete Association, London
[14] Dasambiagio E, Pimenta P, Campello E (2009) A finite strain rod model that incorporates general cross section deformation and its implementation by the Finite Element Method. In: da Costa Mattos HS, Alves M (eds.) Solid Mechanics in Brazil 2009, ABCM symposium series in solid mechanics, vol. 2, pp. 145-168. ABCM, Rio de Janeiro · Zbl 0852.73061
[15] Davies J, Leach P (1994) First-order generalised beam theory. J Constr Steel Res 31(2-3):187-220 · doi:10.1016/0143-974X(94)90010-8
[16] Davies J, Leach P (1994) Second-order generalised beam theory. J Constr Steel Res 31(2-3):221-241 · doi:10.1016/0143-974X(94)90011-6
[17] Ericksen J, Truesdell C (1957/58) Exact theory of stress and strain in rods and shells. Arch Ration Mech Anal 1(1): 295-323 · Zbl 0081.39303
[18] Gonçalves R (2012) A geometrically exact approach to lateral-torsional buckling of thin-walled beams with deformable cross-section. Comput Struct 106-107:9-19 · doi:10.1016/j.compstruc.2012.03.017
[19] Gonçalves R, Ritto-Corrêa M, Camotim D (2010) A large displacement and finite rotation thin-walled beam formulation including cross-section deformation. Comput Methods Appl Mech Eng 199(23-24):1627-1643 · Zbl 1231.74264 · doi:10.1016/j.cma.2010.01.006
[20] Gonçalves R, Ritto-Corrêa M, Camotim D (2010) A new approach to the calculation of cross-section deformation modes in the framework of generalized beam theory. Comput Mech 46(5):759-781 · Zbl 1398.74188 · doi:10.1007/s00466-010-0512-2
[21] Gonçalves R, Ritto-Corrêa M, Camotim D (2011) Incorporation of wall finite relative rotations in a geometrically exact thin-walled beam element. Comput Mech 48(2):229-244 · Zbl 1398.74189 · doi:10.1007/s00466-011-0593-6
[22] Green A, Laws N (1966) General theory of rods. Proc R Soc London Ser A 293(1433):145-155 · doi:10.1098/rspa.1966.0163
[23] Green A, Laws N (1973) Remarks on the theory of rods. J Elast 3(3):179-184 · doi:10.1007/BF00052892
[24] Green A, Laws N, Naghdi P (1968) Rods, plates and shells. Math Proc Camb Philos Soc 64(3):895-913 · Zbl 0172.50403 · doi:10.1017/S0305004100043565
[25] Gruttmann F, Sauer R, Wagner W (1998) A geometrical nonlinear eccentric 3D-beam element with arbitrary cross-sections. Comput Methods Appl Mech Eng 160(3-4):383-400 · Zbl 0951.74065 · doi:10.1016/S0045-7825(97)00305-8
[26] Gruttmann F, Sauer R, Wagner W (1999) Shear stresses in prismatic beams with arbitrary cross-sections. Int J Numer Methods Eng 45(7):865-889 · Zbl 0931.74067 · doi:10.1002/(SICI)1097-0207(19990710)45:7<865::AID-NME609>3.0.CO;2-3
[27] Gruttmann F, Sauer R, Wagner W (2000) Theory and numerics of three-dimensional beams with elastoplastic material behaviour. Int J Numer Methods Eng 48(12):1675-1702 · Zbl 0989.74069 · doi:10.1002/1097-0207(20000830)48:12<1675::AID-NME957>3.0.CO;2-6
[28] Hughes T, Pister K (1978) Consistent linearization in mechanics of solids and structures. J Comput Struct 8(3-4):391-397 · Zbl 0377.73046 · doi:10.1016/0045-7949(78)90183-9
[29] Ibrahimbegovic A (1995) On finite element implementation of geometrically nonlinear Reissner’s beam theory: three-dimensional curved beam elements. Comput Methods Appl Mech Eng 122(1-2):11-26 · Zbl 0852.73061 · doi:10.1016/0045-7825(95)00724-F
[30] Ibrahimbegovic A (1997) On the choice of finite rotation parameters. Comput Methods Appl Mech Eng 149(1-4):49-71 · Zbl 0924.73110 · doi:10.1016/S0045-7825(97)00059-5
[31] Ibrahimbegovic A, Frey F, Kozar I (1995) Computational aspects of vector-like parameterization of three-dimensional finite rotations. Int J Numer Methods Eng 38(21):3653-3673 · Zbl 0835.73074 · doi:10.1002/nme.1620382107
[32] Ibrahimbegovic A, Mikdad M (1998) Finite rotations in dynamics of beams and implicit time-stepping schemes. Int J Numer Methods Eng 41(5):781-814 · Zbl 0902.73045 · doi:10.1002/(SICI)1097-0207(19980315)41:5<781::AID-NME308>3.0.CO;2-9
[33] Ibrahimbegovic A, Taylor R (2002) On the role of frame-invariance in structural mechanics models at finite rotations. Comput Methods Appl Mech Eng 191(45):5159-5176 · Zbl 1023.74048 · doi:10.1016/S0045-7825(02)00442-5
[34] Iura M, Atluri S (1988) Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams. Comput Struct 29(5):875-889 · Zbl 0666.73044 · doi:10.1016/0045-7949(88)90355-0
[35] Iura M, Atluri S (1989) On a consistent theory, and variational formulation of finitely stretched and rotated three-dimensional space-curved beams. Comput Mech 4(2):73-88 · Zbl 0666.73015 · doi:10.1007/BF00282411
[36] Jelenić G, Saje M (1995) A kinematically exact space finite strain beam model—finite element formulation by generalized virtual work principle. Comput Methods Appl Mech Eng 120(1-2):131-161 · Zbl 0852.73062 · doi:10.1016/0045-7825(94)00056-S
[37] Kapania R, Li J (2003) On a geometrically exact curved/twisted beam theory under rigid cross-section assumption. Comput Mech 30(1):4-27 · Zbl 1038.74582
[38] Kirchhoff G (1852) Über die Gleichungen des Gleichgewichts eines elastischen Körpers bei nicht unendlich kleinen Verschiebungen seiner Theile. Sitzgsber Akad Wiss Wien 9:762-773
[39] Klinkel S, Govindjee S (2003) Anisotropic bending-torsion coupling for warping in a non-linear beam. Comput Mech 31(1):78-87 · Zbl 1038.74583 · doi:10.1007/s00466-002-0395-y
[40] Mäkinen J (2007) Total Lagrangian Reissner’s geometrically exact beam element without singularities. Int J Numer Methods Eng 70(9):1009-1048 · Zbl 1194.74441 · doi:10.1002/nme.1892
[41] Mäkinen J (2008) Rotation manifold \[SO(3)\] SO(3) and its tangential vectors. Comput Mech 42(6):907-919 · Zbl 1163.74472 · doi:10.1007/s00466-008-0293-z
[42] Mäkinen J, Kouhia R, Fedoroff A, Marjamäki H (2012) Direct computation of critical equilibrium states for spatial beams and frames. Int J Numer Methods Eng 89(2):135-153 · Zbl 1242.74050 · doi:10.1002/nme.3233
[43] Maleki T, Chitnis G, Ziaie B (2011) A batch-fabricated laser-micromachined pdms actuator with stamped carbon grease electrodes. J Micromech Microeng 21(2): · Zbl 0172.50403
[44] Marsden J, Ratiu T (1999) Introduction to mechanics and symmetry: a basic exposition of classical mechanical systems, 2nd edn. Springer, New York · Zbl 0933.70003 · doi:10.1007/978-0-387-21792-5
[45] Mata P, Oller S, Barbat A (2007) Static analysis of beam structures under nonlinear geometric and constitutive behavior. Comput Methods Appl Mech Eng 196(45-48):4458-4478 · Zbl 1173.74352 · doi:10.1016/j.cma.2007.05.005
[46] Naghdi P, Rubin M (1984) Constrained theories of rods. J Elast 14(4):343-361 · Zbl 0558.73042 · doi:10.1007/BF00125605
[47] Papaioannou I, Fragiadakis M, Papadrakakis M (2005) Inelastic analysis of framed structures using the fiber approach. In: GRACM 05, Proceedings of the 5th international congress computational mechanics, pp 231-238. ASCM, Limassol · Zbl 1231.74264
[48] Pimenta P, Campello E (2003) A fully nonlinear multi-parameter rod model incorporating general cross-sectional in-plane changes and out-of-plane warping. Latin Am J Solids Struct 1(1):119-140
[49] Reissner E (1972) On one-dimensional finite-strain beam theory: the plane problem. J Appl Math Phys 23(5):795-804 · Zbl 0248.73022 · doi:10.1007/BF01602645
[50] Reissner E (1973) On one-dimensional large-displacement finite-strain beam theory. Stud Appl Math 52(2):87-95 · Zbl 0267.73032 · doi:10.1002/sapm197352287
[51] Reissner E (1981) On finite deformations of space-curved beams. J Appl Math Phys 32(6):734-744 · Zbl 0467.73048 · doi:10.1007/BF00946983
[52] Rhim J, Lee S (1998) A vectorial approach to computational modelling of beams undergoing finite rotations. Int J Numer Methods Eng 41(3):527-540 · Zbl 0902.73075 · doi:10.1002/(SICI)1097-0207(19980215)41:3<527::AID-NME297>3.0.CO;2-7
[53] Ritto-Corrêa M, Camotim D (2002) On the differentiation of the rodrigues formula and its significance for the vector-like parameterization of reissnersimo beam theory. Int J Numer Methods Eng 55(9):1005-1032 · Zbl 1033.74027
[54] Saje M (1991) Finite element formulation of finite planar deformation of curved elastic beams. Comput Struct 39(3-4):327-337 · Zbl 0825.73716 · doi:10.1016/0045-7949(91)90030-P
[55] Saje M, Turk G, Kalagasidu A, Vratanar B (1998) A kinematically exact finite element formulation of elastic-plastic curved beams. Comput Struct 67(4):197-214 · Zbl 0962.74542 · doi:10.1016/S0045-7949(98)00046-7
[56] Schardt R (1966) Eine erweiterung der technischen biegetheorie zur berechnung prismatischer faltwerke. Der Stahlbau 35:161-171
[57] Schardt R (1989) Verallgemeinerte technische Biegetheorie. Springer, Berlin · doi:10.1007/978-3-642-52330-4
[58] Simo J (1985) A finite strain beam formulation. The three-dimensional dynamics. Part I. Comput Methods Appl Mech Eng 49(1):55-70 · Zbl 0583.73037 · doi:10.1016/0045-7825(85)90050-7
[59] Simo J, Fox D (1989) On a stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization. Comput Methods Appl Mech Eng 72(3):267-304 · Zbl 0692.73062 · doi:10.1016/0045-7825(89)90002-9
[60] Simo J, Hjelmstad K, Taylor R (1984) Numerical formulations of elasto-viscoplastic response of beams accounting for the effect of shear. Comput Methods Appl Mech Eng 42(3):301-330 · Zbl 0517.73074 · doi:10.1016/0045-7825(84)90011-2
[61] Simo J, Hughes T (1998) Computational in elasticity. Springer, New York · Zbl 0934.74003
[62] Simo J, Rifai M, Fox D (1990) On a stress resultant geometrically exact shell model. Part IV: Variable thickness shells with through-the-thickness stretching. Comput Methods Appl Mech Eng 81(1):91-126 · Zbl 0746.73016 · doi:10.1016/0045-7825(90)90143-A
[63] Simo J, Tarnow N, Doblare M (1995) Non-linear dynamics of three-dimensional rods: exact energy and momentum conserving algorithms. Int J Numer Methods Eng 38(9):1431-1473 · Zbl 0860.73025 · doi:10.1002/nme.1620380903
[64] Simo J, Vu-Quoc L (1986) A three dimensional finite-strain rod model. Part II: computational aspects. Comput Methods Appl Mech Eng 58(1):79-116 · Zbl 0608.73070 · doi:10.1016/0045-7825(86)90079-4
[65] Simo J, Vu-Quoc L (1991) A geometrically-exact rod model incorporating shear and torsion-warping deformation. Int J Solids Struct 27(3):371-393 · Zbl 0731.73029 · doi:10.1016/0020-7683(91)90089-X
[66] Sokolnikoff I (1956) Mathematical theory of elasticity. McGraw-Hill Book Co., Inc., New York · Zbl 0070.41104
[67] St. Venant AJCB (1844) Sur les pressions qui se développent à l’intérieur des corps solides lorsque les déplacements de leurs points, sans altérer l’élasticité, ne peuvent cependant pas être considérés comme très petits. Bull Soc Philomath 5:26-28
[68] Su Y, Wu J, Fan Z, Hwang K, Song J, Huang Y, Rogers J (2012) Postbuckling analysis and its application to stretchable electronics. J Mech Phys Solids 60(3):487-508 · Zbl 1244.74059 · doi:10.1016/j.jmps.2011.11.006
[69] Vlasov V (1959) Tonkostenye Sterjni, 2nd edn. Fizmatgiz, Moscow (French translation: “Piéces Longues en Voiles Minces”, Éditions Eyrolles, Paris, France, 1962)
[70] Wackerfub J, Gruttmann F (2009) A mixed hybrid finite beam element with an interface to arbitrary three-dimensional material models. Comput Methods Appl Mech Eng 198(27-29):2053-2066 · Zbl 1227.74101 · doi:10.1016/j.cma.2009.01.020
[71] Whitman A, DeSilva C (1969) A dynamical theory of elastic directed curves. J Appl Math Phys ZAMP 20(2):200-212 · Zbl 0181.52803 · doi:10.1007/BF01595560
[72] Yiu F (2005) A geometrically exact thin-walled beam theory considering in-plane cross-section distortion. Ph.D. thesis, Cornell University, Ithaca, New York · Zbl 0989.74069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.