×

A semigroup-theoretical view of direct-sum decompositions and associated combinatorial problems. (English) Zbl 1385.16003

Summary: Let \(R\) be a ring and let \(\mathcal C\) be a small class of right \(R\)-modules which is closed under finite direct sums, direct summands, and isomorphisms. Let \(\mathcal V(\mathcal C)\) denote a set of representatives of isomorphism classes in \(\mathcal C\) and, for any module \(M\) in \(\mathcal C\), let \([M]\) denote the unique element in \(\mathcal V(\mathcal C)\) isomorphic to \(M\). Then \(\mathcal V(\mathcal C)\) is a reduced commutative semigroup with operation defined by \([M]+[N]=[M\oplus N]\), and this semigroup carries all information about direct-sum decompositions of modules in \(\mathcal C\). This semigroup-theoretical point of view has been prevalent in the theory of direct-sum decompositions since it was shown that if \(\text{End}_R(M)\) is semilocal for all \(M\in\mathcal C\), then \(\mathcal V(\mathcal C)\) is a Krull monoid. Suppose that the monoid \(\mathcal V(\mathcal C)\) is Krull with a finitely generated class group (for example, when \(\mathcal C\) is the class of finitely generated torsion-free modules and \(R\) is a one-dimensional reduced Noetherian local ring). In this case we study the arithmetic of \(\mathcal V(\mathcal C)\) using new methods from zero-sum theory. Furthermore, based on module-theoretic work of Lam, Levy, Robson, and others we study the algebraic and arithmetic structure of the monoid \(\mathcal V(\mathcal C)\) for certain classes of modules over Prüfer rings and hereditary Noetherian prime rings.

MSC:

16D70 Structure and classification for modules, bimodules and ideals (except as in 16Gxx), direct sum decomposition and cancellation in associative algebras)
11B30 Arithmetic combinatorics; higher degree uniformity
11P70 Inverse problems of additive number theory, including sumsets
16E60 Semihereditary and hereditary rings, free ideal rings, Sylvester rings, etc.
16P40 Noetherian rings and modules (associative rings and algebras)
20M13 Arithmetic theory of semigroups
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DOI: 10.1016/0022-4049(94)90122-8 · Zbl 0831.13001 · doi:10.1016/0022-4049(94)90122-8
[2] DOI: 10.4169/amer.math.monthly.120.01.003 · Zbl 1271.13023 · doi:10.4169/amer.math.monthly.120.01.003
[3] DOI: 10.1016/S0021-8693(02)00031-5 · Zbl 1087.13510 · doi:10.1016/S0021-8693(02)00031-5
[4] P. Diaconis, R. L. Graham and B. Sturmfels, Combinatorics, Paul Erdos is Eighty 1 (János Bolyai Math. Society, 1993) pp. 173–192.
[5] DOI: 10.1016/j.jalgebra.2007.02.041 · Zbl 1124.16003 · doi:10.1016/j.jalgebra.2007.02.041
[6] DOI: 10.1090/S0002-9904-1969-12326-8 · Zbl 0201.04204 · doi:10.1090/S0002-9904-1969-12326-8
[7] DOI: 10.1007/978-3-0348-0303-8 · Zbl 1273.16007 · doi:10.1007/978-3-0348-0303-8
[8] DOI: 10.1016/S0021-8693(02)00164-3 · Zbl 1016.16002 · doi:10.1016/S0021-8693(02)00164-3
[9] A. Facchini, Handbook of Algebra 3 (North-Holland, Amsterdam, 2003) pp. 357–397.
[10] DOI: 10.1007/s10958-006-0393-2 · doi:10.1007/s10958-006-0393-2
[11] DOI: 10.1142/9789812774552_0006 · doi:10.1142/9789812774552_0006
[12] DOI: 10.1007/s13373-012-0024-9 · Zbl 1277.16001 · doi:10.1007/s13373-012-0024-9
[13] DOI: 10.1006/jabr.1999.8092 · Zbl 0955.13006 · doi:10.1006/jabr.1999.8092
[14] DOI: 10.1090/conm/259/04094 · doi:10.1090/conm/259/04094
[15] DOI: 10.1023/B:ALGE.0000048320.11088.49 · Zbl 1077.16007 · doi:10.1023/B:ALGE.0000048320.11088.49
[16] DOI: 10.1016/j.jalgebra.2003.06.004 · Zbl 1094.20036 · doi:10.1016/j.jalgebra.2003.06.004
[17] Feng L. G., Enseign. Math. (2) 48 pp 345– (2002)
[18] DOI: 10.1007/978-3-642-31712-5 · Zbl 1261.13011 · doi:10.1007/978-3-642-31712-5
[19] DOI: 10.7169/facm/1229696561 · Zbl 1228.20046 · doi:10.7169/facm/1229696561
[20] DOI: 10.1016/j.disc.2010.07.028 · Zbl 1228.05302 · doi:10.1016/j.disc.2010.07.028
[21] Fuchs L., Mathematical Surveys and Monographs, in: Modules Over Non-Noetherian Domains (2001)
[22] DOI: 10.1016/j.exmath.2006.07.002 · Zbl 1122.11013 · doi:10.1016/j.exmath.2006.07.002
[23] DOI: 10.1007/s00605-008-0547-z · Zbl 1184.20051 · doi:10.1007/s00605-008-0547-z
[24] DOI: 10.1007/978-3-7643-8962-8 · Zbl 1177.11005 · doi:10.1007/978-3-7643-8962-8
[25] DOI: 10.1016/j.jpaa.2010.02.024 · Zbl 1208.13003 · doi:10.1016/j.jpaa.2010.02.024
[26] DOI: 10.1007/BF02573682 · Zbl 0805.20057 · doi:10.1007/BF02573682
[27] DOI: 10.1201/9781420003208 · doi:10.1201/9781420003208
[28] DOI: 10.1016/j.jpaa.2007.10.020 · Zbl 1133.20047 · doi:10.1016/j.jpaa.2007.10.020
[29] DOI: 10.1016/j.jpaa.2010.02.023 · Zbl 1207.20055 · doi:10.1016/j.jpaa.2010.02.023
[30] DOI: 10.1007/s10998-012-3378-6 · Zbl 1263.11038 · doi:10.1007/s10998-012-3378-6
[31] DOI: 10.1016/0022-4049(94)00088-Z · Zbl 0853.13012 · doi:10.1016/0022-4049(94)00088-Z
[32] DOI: 10.1007/978-3-7643-8962-8 · Zbl 1177.11005 · doi:10.1007/978-3-7643-8962-8
[33] DOI: 10.1007/s00025-012-0250-1 · Zbl 1278.20079 · doi:10.1007/s00025-012-0250-1
[34] DOI: 10.1007/978-3-319-00416-7 · Zbl 1368.11109 · doi:10.1007/978-3-319-00416-7
[35] Halter-Koch F., Ideal Systems. An Introduction to Multiplicative Ideal Theory (1998) · Zbl 0953.13001
[36] Hassler W., Illinois J. Math. 51 pp 99– (2007)
[37] DOI: 10.1090/surv/181 · doi:10.1090/surv/181
[38] DOI: 10.1090/surv/174 · doi:10.1090/surv/174
[39] DOI: 10.1016/j.jalgebra.2012.02.008 · Zbl 1275.13001 · doi:10.1016/j.jalgebra.2012.02.008
[40] DOI: 10.1090/gsm/030 · doi:10.1090/gsm/030
[41] B. Olberding, Models, Modules and Abelian Groups (Walter de Gruyter, 2008) pp. 385–406.
[42] DOI: 10.1016/j.jalgebra.2009.08.011 · Zbl 1242.13023 · doi:10.1016/j.jalgebra.2009.08.011
[43] A. Reinhart, Commutative Algebra. Recent Advances in Commutative Rings, Integer-valued Polynomials and Polynomial Functions, eds. M. Fontana, S. Frisch and S. Glaz (Springer, 2014) pp. 307–330.
[44] R. T. Rockafellar, Combinatorial Mathematics and its Applications (Univiversity of North Carolina Press, Chapel Hill, NC, 1969) pp. 104–127.
[45] DOI: 10.4064/cm121-2-2 · Zbl 1206.11128 · doi:10.4064/cm121-2-2
[46] Sturmfels B., University Lecture Series 8, in: Gröbner Bases and Convex Polytopes (1996) · Zbl 0856.13020
[47] DOI: 10.1006/jabr.2000.8657 · doi:10.1006/jabr.2000.8657
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.