×

Thermal lensing compensation principle for the ACIGA’s High Optical Power Test Facility Test 1. (English) Zbl 1080.83514

Summary: Thermal lensing is becoming recognized as one of the dominant obstacles to the second generation of laser interferometric gravitational wave detectors. Very high optical power is required to circulate in the interferometer to reach the sensitivity goal, creating strong thermal induced wavefront distortion. These effects will be studied at the High Optical Power Test Facility in Gingin, Western Australia. In this paper, we present simulation results for the first test planned for the middle of \(2004\). This experiment will produce 5 kW of optical power circulating inside a Fabry-Perot cavity and will demonstrate large thermal lensing effects.
Two compensation methods were investigated to offset the negative effect of thermal lensing on the cavity: a compensation plate within the arm cavity and adaptive laser mode matching. Advantages and disadvantages of both systems are discussed.

MSC:

83C35 Gravitational waves
83B05 Observational and experimental questions in relativity and gravitational theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Willke, B., the GEO team: Status of GEO600. Class. Quantum Grav. 21, S417–S423 (2004) · doi:10.1088/0264-9381/21/5/006
[2] Sigg, D.: Commissioning of LIGO detectors. Class. Quantum Grav. 21, S409–S415 (2004) · Zbl 1064.83518 · doi:10.1088/0264-9381/21/5/005
[3] Ryutaro Takahashi and the TAMA Collaboration: Status of TAMA300. Class. Quantum Grav. 21, S403–S408 (2004) · Zbl 1064.83519 · doi:10.1088/0264-9381/21/5/083
[4] The Virgo Collaboration: Status of Virgo. Class. Quantum Grav. 21, S385–S394 (2004) · Zbl 1064.83519 · doi:10.1088/0264-9381/21/5/083
[5] Shoemaker, D.: Advanced LIGO. 5th Edoardo Amaldi Conference on Gravitational Waves (2003)
[6] Tomaru, T., Suzuki, T., Miyoki, S., Uchiyama, T., Taylor, C.T., Yamamoto, A., Shintomi, T., Ohashi, M., Kuroda, K.: Thermal lensing in cryogenic sapphire substrates. Class. Quantum Grav. 19, 2045–2049 (2002) · doi:10.1088/0264-9381/19/7/412
[7] Ju, L., Aoun, M., Barriga, P., Blair, D.G., Brooks, A., Burman, R., Burston, R., Chin, X.T., Chin, E.J., Lee, C.Y., Coward, D., Cusack, B., de Vine, G., Degallaix, J., Dumas, J.C., Garoi, F., Gras, S., Gray, M., Hosken, D., Howell, E., Jacob, J.S., Kelly, T.L., Lee, B., Lee, K.T., Lun, T., McClelland, D., Mow-Lowry, C., Mudge, D., Munch, J., Schediwy, S., Scott, S., Searle, A., Sheard, B., Slagmolen, B., Veitch, P., Winterflood, J., Woolley, A., Yan, Z., Zhao, C.: ACIGA’s high optical power test facility. Class. Quantum Grav. 21, S887–S893 (2004) · doi:10.1088/0264-9381/21/5/077
[8] Lawrence, R., Zucker, M., Fritschel, P., Marfuta, P., Shoemaker, D.: Adaptive thermal compensation of test masses in advanced LIGO. Class. Quantum Grav. 19, 1803–1812 (2002) · doi:10.1088/0264-9381/19/7/377
[9] Degallaix, J., Zhao, C., Ju, L., Blair, D.: Simulation of bulk absorption thermal lensing in transmissive optics of gravitational waves detectors. Appl. Phys. B 77, 409–414 (2003) · doi:10.1007/s00340-003-1261-0
[10] Mansell, J.D., Hennawi, J., Gustafson, E.K., Fejer, M.M., Byer, R.L., Clubley, D., Yoshida, S., Reitze, D.H.: Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a Shack-Hartmann wave-front sensor. Applied Optics 40, 366–374 (2001) · doi:10.1364/AO.40.000366
[11] Lawrence, R.: Active Wavefront Correction in Laser Interferometric Gravitational Wave Detectors. MIT (2003)
[12] Adhikari, R., Delker, T., Gorlenko, A., Khazanov, E., Kulagin, O., Mansell, J., Mueller, G., Reitze, D., Shu, Q., Tanner, D., Yoshida, S.: Measurement of Self-induced Beam Effects in Transmissive Optics for LIGO. 5 LIGO, T980021-00 (1998)
[13] Lück, H., Müller, K.-O., Aufmuth, P., Danzmann, K.: Correction of wavefront distortions by means of thermally adaptive optics. Optical Communications 175, 275–287 (2000) · doi:10.1016/S0030-4018(00)00468-5
[14] Lück, H., Freise, A., Goßler, S., Kawabe, K., Danzmann, K.: Thermal correction of the radii of curvature of mirrors for GEO 600. Class. Quantum Grav. 21, S985–S989 (2004) · doi:10.1088/0264-9381/21/5/090
[15] Slagmolen, B.: Mode matching telescope design for AIGO, AIGO (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.