×

zbMATH — the first resource for mathematics

Duality for multiobjective optimization problem with vanishing constraints. (English) Zbl 07063818
Summary: In this article, we continue the effort of Mishra et al. [S. K. Mishra, V. Singh, V. Laha and R. N. Mohapatra, On constraint qualifications for multiobjective optimization problems with vanishing constraints, Optimization Methods, Theory and Applications, Springer Berlin Heidelberg (2015), 95-135] to discuss duality results of two types of dual models for a multiobjective optimization problem with vanishing constraints. These duality conditions are illustrated by some non-trivial examples.
MSC:
26A51 Convexity of real functions in one variable, generalizations
49J35 Existence of solutions for minimax problems
90C29 Multi-objective and goal programming
PDF BibTeX XML Cite
Full Text: Link
References:
[1] W. Achtziger and C. Kanzow, Mathematical programs with vanishing constraints: optimality conditions and constraint qualifications, Math. Prog., 114, (2008) 69-99. · Zbl 1151.90046
[2] B. Aghezzaf and M. Hachimi, Sufficiency and duality in multiobjective programming involving generalized (F, ρ)-convexity, J. Math. Anal. Appl., 258, (2001) 617-628. · Zbl 0973.90069
[3] M. Hachimi and B. Aghezzaf, Second order duality in multiobjective programming involving generalized type I functions, Numer. Funct. Anal. Optim., 25, (2004) 725736. · Zbl 1071.90042
[4] A. K. Bhurjee and S. K. Padhan, Optimality conditions and duality results for nondifferentiable interval optimization problems, J. Appl. Math. Comput., 50, (2016) 59-71. · Zbl 1330.90072
[5] F. Facchinei and J. S. Pang, Finite-dimensional variational inequalities and complementarity problems, Springer, New York, 2003. · Zbl 1062.90002
[6] M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80, (1981) 545-550. · Zbl 0463.90080
[7] T. Hoheisel and C. Kanzow, First-and second-order optimality conditions for mathematical programs with vanishing constraints, Appl. Math., 52, (2007) 495-514. · Zbl 1164.90407
[8] T. Hoheisel and C. Kanzow, Stationary conditions for mathematical programs with vanishing constraints using weak constraint qualifications, J. Math. Anal. Appl., 337, (2008) 292-310. · Zbl 1141.90572
[9] T. Hoheisel and C. Kanzow, On the Abadie and Guignard constraint qualification for mathematical programmes with vanishing constraints, Optimization, 58, (2009) 431-448. · Zbl 1162.90560
[10] A. F. Izmailov and M. V. Solodov, Mathematical programs with vanishing constraints: optimality conditions, sensitivity, and a relaxation method, J. Optim. Theory Appl., 142, (2009) 501-532. · Zbl 1180.90312
[11] X. F. Li, Constraint qualifications in nonsmooth multiobjective optimization, J. Optim. Theory Appl., 106, (2000) 373-398. · Zbl 0976.90092
[12] Z. A. Liang , H. X. Huang and P. M. Pardalos, Efficiency conditions and duality for a class of multiobjective fractional programming problems, J. Global Optim., 27, (2003) 447-471. · Zbl 1106.90066
[13] Z. Q. Luo , J. S. Pang and D. Ralph, Mathematical programs with equilibrium constraints, Cambridge University Press, Cambridge, 1996. · Zbl 1139.90003
[14] T. Maeda, Second-order conditions for efficiency in nonsmooth multiobjective optimization problems, J. Optim. Theory Appl., 122 (2004) 521-538. · Zbl 1082.90106
[15] S. K. Mishra, V. Singh, V. Laha and R. N. Mohapatra, On constraint qualifications for multiobjective optimization problems with vanishing constraints, Optimization Methods, Theory and Applications, Springer Berlin Heidelberg (2015), 95-135. · Zbl 1354.90129
[16] B. Mond and T. Weir, Generalized concavity and duality, Generalized concavity in optimization and economics, S. Schaible and W. T. Ziemba (eds.), Academic Press, New York (1981), 263-279. · Zbl 0538.90081
[17] J. V. Outrarata, M. Kocvara and J. Zowe, Nonsmooth approach to optimization problems with equilibrium constraints, Kluwer Academic Publishers, Dordrecht 1998.
[18] V. Preda and I. Chitescu, On constraint qualification in multiobjective optimization problems: semidifferentiable case, J. Optim. Theory Appl., 100, (1999) 417-433. · Zbl 0915.90231
[19] A. M. Stancu, Optimality and duality for multiobjective fractional programming problems with n-set functions and generalized V -type-I univexity, Rev. Roumaine Math. Pures Appl., 57, (2012) 401-421. · Zbl 1289.90176
[20] A. M. Stancu, Mathematical programming with type-I functions, Matrix Rom., Bucharest, 2013, 197 pages.
[21] I. M. Stancu-Minasian and A. M. Stancu, Duality for multiple objective fractional programming with generalized type-I univexity, In: A. Migdalas et al. (eds.), Optimization Theory, Decision Making, and Operations Research Applications, Springer Proceedings in Mathematics & Statistics 31, Springer Science-Business Media New York 2013, pp. 199-209. · Zbl 1375.90289
[22] I. Stancu-Minasian, A. M. Stancu and A. Jayswal, Minimax fractional programming problem with (p, r)-ρ-(p, r)-invex functions, An. Univ. Craiova Ser. Mat. Inform., 43, (2016) 94-105. · Zbl 1413.90283
[23] P. Wolfe, A duality theorem for nonlinear programming, Quart. Appl. Math., 19, (1961) 239-244. · Zbl 0109.38406
[24] C. L. Yan, Sufficiency and duality for nonsmooth multiobjective fractional programming problems involving (ϕ, ρ, α)− V -invexity, J. Appl. Math. Comput., 52, (2016) 59-72. · Zbl 1357.90145
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.