zbMATH — the first resource for mathematics

Some anisotropic homogeneous cosmological models in self-creation cosmology. (English) Zbl 1247.83156
Summary: The paper presents an exact solution of cylindrically symmetric cosmological models which are of Petrov type-I or Petrov type-D in Barber’s second self-creation theory of gravitation. Some physical and geometrical properties of these models are also discussed.
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83F05 Cosmology
83C15 Exact solutions to problems in general relativity and gravitational theory
85A40 Cosmology
83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory
Full Text: DOI
[1] Barber, G.A.: Gen. Relativ. Gravit. 14, 117 (1982) · doi:10.1007/BF00756918
[2] Brans, C., Dicke, R.H.: Phys. Rev. 124, 925 (1961) · Zbl 0103.21402 · doi:10.1103/PhysRev.124.925
[3] Brans, C.: Gen. Relativ. Gravit. 19, 949 (1987) · doi:10.1007/BF00759299
[4] Soleng, H.H.: Astrophys. Space Sci. 139, 13 (1987) · doi:10.1007/BF00643809
[5] Reddy, D.R.K., Venkateshwarlu, R.: Astrophys. Space Sci. 155, 135 (1989) · Zbl 0701.76126 · doi:10.1007/BF00645214
[6] Marder, L.: Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 246, 133 (1958) · doi:10.1098/rspa.1958.0111
[7] Roy, S.R., Singh, P.N.: J. Phys. A 9, 255 (1976) · doi:10.1088/0305-4470/9/2/010
[8] Roy, S.R., Prakash, S.: J. Phys. A 9, 261 (1976) · doi:10.1088/0305-4470/9/2/011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.