×

Numerical investigation, environmental consideration, and the use of machine learning in optimizing the dimensions of a rectangular blade between two blades in the presence of a magnetic field (two-phase method). (English) Zbl 1521.74185

MSC:

74P99 Optimization problems in solid mechanics
68T07 Artificial neural networks and deep learning
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Onyiriuka, E. J., Evaluation of single-phase, discrete, mixture and combined model of discrete and mixture phases in predicting nanofluid heat transfer characteristics for laminar and turbulent flow regimes, Adv Powder Technol, 29, 11, 2644-2657 (2018)
[2] Xu, D.; Hu, Y.; Li, D., A lattice boltzmann investigation of two-phase natural convection of cu-water nanofluid in a square cavity, Case Stud Therm Eng (2018)
[3] Valipour, P., Two phase model for nanofluid heat transfer intensification in a rotating system under the effect of magnetic field, Chem Eng Process Process Intensif, 123, 47-57 (2018)
[4] Khosravi-Bizhaem, H.; Abbassi, A., Effects of curvature ratio on forced convection and entropy generation of nanofluid in helical coil using two-phase approach, Adv Powder Technol, 29, 4, 890-903 (2018)
[5] Kashyap, D.; Dass, A. K., Two-phase lattice Boltzmann simulation of natural convection in a Cu-water nanofluid-filled porous cavity: effects of thermal boundary conditions on heat transfer and entropy generation, Adv Powder Technol, 29, 11, 2707-2724 (2018)
[6] Selimefendigil, F.; Öztop, H. F., Role of magnetic field and surface corrugation on natural convection in a nanofluid filled 3D trapezoidal cavity, Int Commun Heat Mass Transf, 95, 182-196 (2018)
[7] Malekpour, A.; Karimi, N.; Mehdizadeh, A., Magnetohydrodynamics, natural convection, and entropy generation of CuO-water nanofluid in an I-shape enclosure—a numerical study, J Therm Sci Eng Appl, 10, 6, Article 061016 pp. (2018)
[8] Zahan, I.; Alim, M., Effects of Rayleigh number and wall conductivity on conjugate natural convection of nanofluid in a heat conducting rectangular vertical walled enclosure, (Proceedings of the AIP conference (2018), AIP Publishing)
[9] Yaghoubi Emami, R.; Siavashi, M.; Shahriari Moghaddam, G., The effect of inclination angle and hot wall configuration on Cu-water nanofluid natural convection inside a porous square cavity, Adv Powder Technol, 29, 3, 519-536 (2018)
[10] Ashorynejad, H. R.; Shahriari, A., MHD natural convection of hybrid nanofluid in an open wavy cavity, Results Phys, 9, 440-455 (2018)
[11] Sajjadi, H., Double MRT Lattice Boltzmann simulation of 3-D MHD natural convection in a cubic cavity with sinusoidal temperature distribution utilizing nanofluid, Int J Heat Mass Transf, 126, 489-503 (2018)
[12] Revnic, C., Natural convection in a rectangular cavity filled with nanofluids: effect of variable viscosity, Int J Numer Methods Heat Fluid Flow, 28, 6, 1410-1432 (2018)
[13] Sheremet, M. A.; Pop, I.; Mahian, O., Natural convection in an inclined cavity with time-periodic temperature boundary conditions using nanofluids: application in solar collectors, Int J Heat Mass Transf, 116, 751-761 (2018)
[14] Selimefendigil, F.; Öztop, H. F., MHD natural convection and entropy generation in a nanofluid-filled cavity with a conductive partition, Exergetic, energetic and environmental dimensions, 763-778 (2018), Elsevier
[15] Astanina, M.; Abu-Nada, E.; Sheremet, M., Combined effects of thermophoresis, Brownian motion, and nanofluid variable properties on CuO-water nanofluid natural convection in a partially heated square cavity, J Heat Transf, 140, 8, Article 082401 pp. (2018)
[16] Gholami, M., Natural convection heat transfer enhancement of different nanofluids by adding dimple fins on a vertical channel wall, Chin J Chem Eng, 28, 3, 643-659 (2020)
[17] Torki, M.; Etesami, N., Experimental investigation of natural convection heat transfer of SiO_2/water nanofluid inside inclined enclosure, J Therm Anal Calorim, 139, 2, 1565-1574 (2020)
[18] Sheikholeslami, M.; Li, Z.; Shamlooei, M., Nanofluid MHD natural convection through a porous complex shaped cavity considering thermal radiation, Phys Lett A, 382, 24, 1615-1632 (2018)
[19] Cai, K.; Jing, X.; Zhang, Y.; Li, L.; Lang, X., A novel reed-leaves like aluminum-doped manganese oxide presetting sodium-ion constructed by coprecipitation method for high electrochemical performance sodium-ion battery, Int J Energy Res, 46, 10, 14570-14580 (2022)
[20] Li, Z.; Wang, K.; Li, W.; Yan, S.; Chen, F.; Peng, S., Analysis of surface pressure pulsation characteristics of centrifugal pump magnetic liquid sealing film, Front. Energy Res., 10, Article 937299 pp. (2022)
[21] Wang, X.; Lyu, X., Experimental study on vertical water entry of twin spheres side-by-side, Ocean Eng, 221, Article 108508 pp. (2021)
[22] Rashad, A., Entropy generation and MHD natural convection of a nanofluid in an inclined square porous cavity: effects of a heat sink and source size and location, Chin J Phys, 56, 1, 193-211 (2018)
[23] Sheikholeslami, M.; Sadoughi, M., Mesoscopic method for MHD nanofluid flow inside a porous cavity considering various shapes of nanoparticles, Int J Heat Mass Transf, 113, 106-114 (2017)
[24] Mahmoudi, A., Lattice Boltzmann simulation of MHD natural convection in a nanofluid-filled cavity with linear temperature distribution, Powder Technol, 256, 257-271 (2014)
[25] Kefayati, G. R., Lattice Boltzmann simulation of MHD mixed convection in a lid-driven square cavity with linearly heated wall, Sci Iran, 19, 4, 1053-1065 (2012)
[26] Manjunatha, S., Heat transfer enhancement in the boundary layer flow of hybrid nanofluids due to variable viscosity and natural convection, Heliyon, 5, 4, e01469 (2019)
[27] Mahmoudi, A., Analysis of the convective heat transfer characteristics in a two-dimensional cavity subjected to an external magnetic field, Chin J Phys, 68, 618-632 (2020)
[28] Ghalambaz, M.; Sabour, M.; Pop, I., Free convection in a square cavity filled by a porous medium saturated by a nanofluid: viscous dissipation and radiation effects, Eng Sci Technol Int J, 19, 3, 1244-1253 (2016)
[29] Zhang, G.; Zhang, Z.; Sun, M.; Yu, Y.; Wang, J.; Cai, S., The influence of the temperature on the dynamic behaviors of magnetorheological gel, Adv Eng Mater, Article 2101680 pp. (2022)
[30] Zhang, G.; Chen, J.; Zhang, Z.; Sun, M.; Yu, Y.; Wang, J.; Cai, S., Analysis of magnetorheological clutch with double cup-shaped gap excited by Halbach array based on finite element method and experiment, Smart Mater Struct (2022)
[31] Zhang, D.; Tan, C.; Ou, T.; Zhang, S.; Li, L.; Ji, X., Constructing advanced electrode materials for low-temperature lithium-ion batteries: a review, Energy Rep, 8, 4525-4534 (2022)
[32] Zhang, X., Statistical analysis of turbulent thermal free convection over a small heat source in a large enclosed cavity, Appl Therm Eng, 93, 446-455 (2016)
[33] Cho, C. C., Influence of magnetic field on natural convection and entropy generation in Cu-water nanofluid-filled cavity with wavy surfaces, Int J Heat Mass Transf, 101, 637-647 (2016)
[34] Ghodsinezhad, H.; Sharifpur, M.; Meyer, J. P., Experimental investigation on cavity flow natural convection of Al_2O_3-water nanofluids, Int Commun Heat Mass Transf, 76, 316-324 (2016)
[35] Ahrar, A. J.; Djavareshkian, M. H., Lattice Boltzmann simulation of a Cu-water nanofluid filled cavity in order to investigate the influence of volume fraction and magnetic field specifications on flow and heat transfer, J Mol Liq, 215, 328-338 (2016)
[36] Teamah, M. A.; El-Maghlany, W. M., Augmentation of natural convective heat transfer in square cavity by utilizing nanofluids in the presence of magnetic field and uniform heat generation/absorption, Int J Therm Sci, 58, 130-142 (2012)
[37] Zhang, Z.; Du, M.; Li, Y.; Liu, W.; Wu, H.; Cui, L.; Li, M., Effects of mooring configuration on the dynamic behavior of a TLP with tendon failure, Desalin Water Treat, 268, 215-228 (2022)
[38] Zhang, Z.; Feng, L.; Liu, H.; Wang, L.; Wang, S.; Tang, Z., Mo^6+-P^5+ co-doped Li_2ZnTi_3O_8 anode for Li-storage in a wide temperature range and applications in LiNi_0.5Mn_1.5O_4/Li_2ZnTi_3O_8 full cells, Inorg Chem Front, 9, 1, 35-43 (2021)
[39] Lu, S.; Yin, Z.; Liao, S.; Yang, B.; Liu, S.; Liu, M.; Zheng, W., An asymmetric encoder-decoder model for Zn-ion battery lifetime prediction, Energy Rep, 8, 33-50 (2022)
[40] Gao, T.; Li, C.; Zhang, Y.; Yang, M.; Jia, D.; Jin, T.; Hou, Y.; Li, R., Dispersing mechanism and tribological performance of vegetable oil-based CNT nanofluids with different surfactants, Tribol Int, 131, 51-63 (2019)
[41] Zhang, Y.; Li, C.; Jia, D.; Li, B.; Wang, Y.; Yang, M.; Hou, Y.; Zhang, X., Experimental study on the effect of nanoparticle concentration on the lubricating property of nanofluids for MQL grinding of Ni-based alloy, J Mater Process Technol, 232, 100-115 (2016)
[42] Li, B.; Li, C.; Zhang, Y.; Wang, Y.; Jia, D.; Yang, M.; Zhang, N.; Qu, Q.; Han, Z.; Sun, K., Heat transfer performance of MQL grinding with different nanofluids for Ni-based alloys using vegetable oil, J Clean Prod, 154, 1-11 (2017)
[43] Alloui, Z.; Vasseur, P.; Reggio, M., Natural convection of nanofluids in a shallow cavity heated from below, Int J Therm Sci, 50, 3, 385-393 (2011)
[44] Aminossadati, S. M.; Ghasemi, B., Natural convection of water-CuO nanofluid in a cavity with two pairs of heat source-sink, Int Commun Heat Mass Transf, 38, 5, 672-678 (2011)
[45] Alinia, M.; Ganji, D. D.; Gorji-Bandpy, M., Numerical study of mixed convection in an inclined two sided lid driven cavity filled with nanofluid using two-phase mixture model, Int Commun Heat Mass Transf, 38, 10, 1428-1435 (2011)
[46] Zhang, H.; Zou, Q.; Ju, Y.; Song, C.; Chen, D., Distance-based support vector machine to predict DNA N6-methyladine modification, Curr Bioinform, 17, 5, 473-482 (2022)
[47] Wang, Y.; Li, C.; Zhang, Y.; Yang, M.; Li, B.; Jia, D.; Hou, Y.; Mao, C., Experimental evaluation of the lubrication properties of the wheel/workpiece interface in minimum quantity lubrication (MQL) grinding using different types of vegetable oils, J Clean Prod, 127, 487-499 (2016)
[48] Zhang, Y.; Li, C.; Ji, H.; Yang, X.; Yang, M.; Jia, D.; Zhang, X.; Li, R.; Wang, J., Analysis of grinding mechanics and improved predictive force model based on material-removal and plastic-stacking mechanisms, Int J Mach Tools Manuf, 122, 81-97 (2017)
[49] Yang, M.; Li, C.; Zhang, Y.; Jia, D.; Zhang, X.; Hou, Y.; Li, R.; Wang, J., Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions, Int J Mach Tools Manuf, 122, 55-65 (2017)
[50] Karatas, H.; Derbentli, T., Natural convection in differentially heated rectangular cavities with time periodic boundary condition on one side, Int J Heat Mass Transf, 129, 224-237 (2019)
[51] Benos, L.; Sarris, I. E., Analytical study of the magnetohydrodynamic natural convection of a nanofluid filled horizontal shallow cavity with internal heat generation, Int J Heat Mass Transf, 130, 862-873 (2019)
[52] Cao, C.; Wang, J.; Kwok, D.; Zhang, Z.; Cui, F.; Zhao, Da; Li, M. J.; Zou, Q., webTWAS: a resource for disease candidate susceptibility genes identified by transcriptome-wide association study, Nucleic Acids Res, 50, D1, D1123-D1130 (2022)
[53] Xu, D.; Hu, Y.; Li, D., A lattice Boltzmann investigation of two-phase natural convection of Cu-water nanofluid in a square cavity, Case Stud Therm Eng, 13, Article 100358 pp. (2019)
[54] Hosseini, M., Nanofluid in tilted cavity with partially heated walls, J Mol Liq, 199, 545-551 (2014)
[55] Guo, S.; Li, C.; Zhang, Y.; Wang, Y.; Li, B.; Yang, M.; Zhang, X.; Liu, G., Experimental evaluation of the lubrication performance of mixtures of castor oil with other vegetable oils in MQL grinding of nickel-based alloy, J Clean Prod, 140, 1060-1076 (2017)
[56] Wang, Y.; Li, C.; Zhang, Y.; Li, B.; Yang, M.; Zhang, X.; Guo, S.; Liu, G., Experimental evaluation of the lubrication properties of the wheel/workpiece interface in MQL grinding with different nanofluids, Tribol Int, 99, 198-210 (2016)
[57] Gao, T.; Li, C.; Jia, D.; Zhang, Y.; Yang, M.; Wang, X.; Cao, H.; Li, R.; Ali, H. M.; Xu, X., Surface morphology assessment of CFRP transverse grinding using CNT nanofluid minimum quantity lubrication, J Clean Prod, 277, Article 123328 pp. (2020)
[58] Noriega, H.; Reggio, M.; Vasseur, P., Natural convection of nanofluids in a square cavity heated from below, Comput Therm Sci An Int J, 5, 4 (2013)
[59] Khorasanizadeh, H.; Amani, J.; Nikfar, M., Numerical investigation of Cu-water nanofluid natural convection and entropy generation within a cavity with an embedded conductive baffle, Sci Iran, 19, 6, 1996-2003 (2012)
[60] He, Y., Lattice Boltzmann simulation of alumina-water nanofluid in a square cavity, Nanosc Res Lett, 6, 1, 184 (2011)
[61] Rostami, S.; Aghakhani, S.; Hajatzadeh Pordanjani, A.; Afrand, M.; Cheraghian, G.; Oztop, H. F., A Review on the Control Parameters of Natural Convection in Different Shaped Cavities with and without Nanofluid, Processes, 8, 1011 (2020)
[62] Yang, M.; Li, C.; Zhang, Y.; Jia, D.; Li, R.; Hou, Y.; Cao, H.; Wang, J., Predictive model for minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics under different lubricating conditions, Ceram Int, 45, 12, 14908-14920 (2019)
[63] Huang, B. T.; Li, C. H.; Zhang, Y. B.; Ding, W. F.; Yang, M.; Yang, Y. Y.; Zhai, H.; Xu, X. F.; Wang, D. Z.; Debnath, S.; Jamil, M.; Li, H. N.; Ali, H. M.; Gupta, M. K.; Said, Z., Advances in fabrication of ceramic corundum abrasives based on sol-gel process, Chin J Aeronaut, 34, 6, 1-17 (2021)
[64] Yang, M.; Li, C.; Luo, L.; Li, R.; Long, Y., Predictive model of convective heat transfer coefficient in bone micro-grinding using nanofluid aerosol cooling, Int Commun Heat Mass Transf, 125, Article 105317 pp. (2021)
[65] Yin, Q.; Li, C.; Dong, L.; Bai, X.; Zhang, Y.; Yang, M.; Jia, D.; Li, R.; Liu, Z., Effects of physicochemical properties of different base oils on friction coefficient and surface roughness in MQL milling AISI 1045, Int J Precis Eng Manuf Green Technol, 8, 6, 1629-1647 (2021)
[66] Gao, T.; Li, C.; Yang, M.; Zhang, Y.; Jia, D.; Ding, W.; Debnath, S.; Yu, T.; Said, Z.; Wang, J., Mechanics analysis and predictive force models for the single-diamond grain grinding of carbon fiber reinforced polymers using CNT nano-lubricant, J Mater Process Technol, 290, Article 116976 pp. (2021)
[67] Duan, Z.; Li, C.; Ding, W.; Zhang, Y.; Yang, M.; Gao, T.; Cao, H.; Xu, X.; Wang, D.; Mao, C.; Li, H. N.; Kumar, G. M.; Said, Z.; Debnath, S.; Jamil, M.; Ali, H. M., Milling force model for aviation aluminum alloy: academic insight and perspective analysis, Chin J Mech Eng, 34, 1, 1-35 (2021)
[68] Liu, M.; Li, C.; Cao, C.; Wang, L.; Li, X.; Che, J.; Yang, H.; Zhang, X.; Zhao, H.; He, G.; Liu, X., Walnut fruit processing equipment: academic insights and perspectives, Food Eng Rev, 13, 4, 822-857 (2021)
[69] Wang, Y.; Li, C.; Zhang, Y.; Yang, M.; Li, B.; Dong, L.; Wang, J., Processing characteristics of vegetable oil-based nanofluid MQL for grinding different workpiece materials, Int J Precis Eng Manuf Green Technol, 5, 2, 327-339 (2018)
[70] Bai, X.; Li, C.; Dong, L.; Yin, Q., Experimental evaluation of the lubrication performances of different nanofluids for minimum quantity lubrication (MQL) in milling Ti-6Al-4V, Int J Adv Manuf Technol, 101, 9, 2621-2632 (2019)
[71] Manninen, M, Taivassalo, V, and Kallio, S. On the mixture model for multiphase flow. Finland: N. p., 1996. Web.
[72] Naumann, Z.; Schiller, L., A drag coefficient correlation, J Z Ver Deutsch Ing, 77, 318, e323 (1935)
[73] Vajjha, R. S.; Das, D. K., Experimental determination of thermal conductivity of three nanofluids and development of new correlations, Int J Heat Mass Transf, 52, 21-22, 4675-4682 (2009) · Zbl 1176.80044
[74] Wang, K., Upgrading wood biorefinery: an integration strategy for sugar production and reactive lignin preparation, Ind Crops Prod, 187, Article 115366 pp. (2022)
[75] Xie, Y., A multiscale biomimetic strategy to design strong, tough hydrogels by tuning the self-assembly behavior of cellulose, J Mater Chem A (2022)
[76] Hou, S., Understanding of promoting enzymatic hydrolysis of combined hydrothermal and deep eutectic solvent pretreated poplars by Tween 80, Bioresour Technol, 362, Article 127825 pp. (2022)
[77] Akbari, M.; Galanis, N.; Behzadmehr, A., Comparative analysis of single and two-phase models for CFD studies of nanofluid heat transfer, Int J Therm Sci, 50, 8, 1343-1354 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.