×

zbMATH — the first resource for mathematics

Uniform bounds for quotients of Green functions on \(C^{1,1}\)-domains. (English) Zbl 0465.35028

MSC:
35J15 Second-order elliptic equations
35B35 Stability in context of PDEs
31B35 Connections of harmonic functions with differential equations in higher dimensions
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] A. ANCONA, Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien, Ann. Inst. Fourier, 28, 4 (1978), 169-213. · Zbl 0377.31001
[2] A. ANCONA, Principe de Harnack à la frontière et problèmes de frontière de martin, Lecture Notes in Mathematics, 787 (1980), 9-28. · Zbl 0439.31003
[3] N. BOBOC, P. MUSTATA, Espaces harmoniques associés aux opérateurs différentiels linéaires du second ordre de type elliptique, Lecture Notes in Mathematics, 68 (1968). · Zbl 0167.40301
[4] C. CONSTANTINESCU, A. CORNEA, Potential theory on harmonic spaces, Berlin-Heidelberg-New York, 1972. · Zbl 0248.31011
[5] D. GILBARG, J. SERRIN, On isolated singularities of solutions of second order elliptic differential equations, J. d’Anal. Math., 4 (1954-1956), 309-340. · Zbl 0071.09701
[6] R.M. HERVE, Recherches axiomatiques sur la théorie des fonctions surhamoniques et du potentiel, Ann. Inst. Fourier, 12 (1962), 415-571. · Zbl 0101.08103
[7] H. HUEBER, M. SIEVEKING, On the quotients of Green functions (preliminary version), Bielefeld, September 1980 (unpublished). · Zbl 0535.31004
[8] J. SERRIN, On the Harnack inequality for linear elliptic equations, J. d’Anal. Math., 4 (1956), 292-308. · Zbl 0070.32302
[9] J.-C. TAYLOR, On the martin compactification of a bounded Lipschitz domain in a Riemannian manifold, Ann. Inst. Fourier, 28, 2 (1977), 25-52. · Zbl 0363.31010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.