×

zbMATH — the first resource for mathematics

Finite state projection for approximating the stationary solution to the chemical master equation using reaction rate equations. (English) Zbl 1425.92099
Summary: When modeling a physical system using a Markov chain, it is often instructive to compute its probability distribution at statistical equilibrium, thereby gaining insight into the stationary, or long-term, behavior of the system. Computing such a distribution directly is problematic when the state space of the system is large. Here, we look at the case of a chemical reaction system that models the dynamics of cellular processes, where it has become popular to constrain the computational burden by using a finite state projection, which aims only to capture the most likely states of the system, rather than every possible state. We propose an efficient method to further narrow these states to those that remain highly probable in the long run, after the transient behavior of the system has dissipated. Our strategy is to quickly estimate the local maxima of the stationary distribution using the reaction rate formulation, which is of considerably smaller size than the full-blown chemical master equation, and from there develop adaptive schemes to profile the distribution around the maxima. We include numerical tests that show the efficiency of our approach.
MSC:
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Burrage, K.; Hegland, M.; MacNamara, S.; Sidje, R. B., A Krylov-based finite state projection algorithm for solving the chemical master equation arising in the discrete modelling of biological systems, Proc. of The AA Markov 150th Anniversary Meeting, (2006)
[2] Cao, Y.; Gillespie, D.; Petzold, L., Multiscale stochastic simulation algorithm with stochastic partial equilibrium assumption for chemically reacting systems, J. Comput. Phys., 206, 2, 395-411, (2005) · Zbl 1088.80004
[3] Cao, Y.; Terebus, A.; Liang, J., Accurate chemical master equation solution using multi-finite buffers, Multiscale Model. Simul., 14, 2, 923-963, (2016) · Zbl 1354.92033
[4] Cao, Z.; Grima, R., Linear mapping approximation of gene regulatory networks with stochastic dynamics, Nat. Commun., 9, 1, 3305, (2018)
[5] Deuflhard, P.; Huisinga, W.; Jahnke, T.; Wulkow, M., Adaptive discrete Galerkin methods applied to the chemical master equation, SIAM J. Sci. Comput., 30, 6, 2990-3011, (2008) · Zbl 1178.41003
[6] Dinh, K. N.; Sidje, R. B., Understanding the finite state projection and related methods for solving the chemical master equation, Phys. Ciol., 13, 3, 035003, (2016)
[7] Dolgov, S.; Khoromskij, B., Simultaneous state-time approximation of the chemical master equation using tensor product formats, Numer. Linear Algebra Appl., 22, 2, 197-219, (2015) · Zbl 1363.65117
[8] Duncan, A.; Liao, S.; Vejchodskỳ, T.; Erban, R.; Grima, R., Noise-induced multistability in chemical systems: discrete versus continuum modeling, Phys. Rev. E, 91, 4, 042111, (2015)
[9] Fox, Z.; Neuert, G.; Munsky, B., Finite state projection based bounds to compare chemical master equation models using single-cell data, J. Chem. Phys., 145, 7, 074101, (2016)
[10] N. G. Van Kampen, Stochastic Processes in Physics and Chemistry, vol. vol. 1, p. 214. · Zbl 0974.60020
[11] Gardner, T. S.; Cantor, C. R.; Collins, J. J., Construction of a genetic toggle switch in Escherichia coli, Nature, 403, 6767, 339, (2000)
[12] Gillespie, D. T., A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys., 22, 4, 403-434, (1976)
[13] Gillespie, D. T., Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81, 25, 2340-2361, (1977)
[14] Gillespie, D. T., The chemical Langevin equation, J. Chem. Phys., 113, 1, 297-306, (2000)
[15] Grasedyck, L.; Kressner, D.; Tobler, C., A Literature Survey of Low-Rank Tensor Approximation Techniques, 36, 53-78, (2013), GAMM-Mitteilungen · Zbl 1279.65045
[16] Grima, R., An effective rate equation approach to reaction kinetics in small volumes: theory and application to biochemical reactions in nonequilibrium steady-state conditions, J. Chem. Phys., 133, 3, 07B604, (2010)
[17] Grima, R.; Schmidt, D. R.; Newman, T. J., Steady-state fluctuations of a genetic feedback loop: an exact solution, J. Chem. Phys., 137, 3, 035104, (2012)
[18] Grima, R.; Walter, N. G.; Schnell, S., Single-molecule enzymology à la Michaelis-Menten, FEBS J., 281, 2, 518-530, (2014)
[19] Gupta, A.; Mikelson, J.; Khammash, M., A finite state projection algorithm for the stationary solution of the chemical master equation, J. Chem. Phys., 147, 15, 154101, (2017)
[20] Harris, S. L.; Levine, A. J., The p53 pathway: positive and negative feedback loops, Oncogene, 24, 17, 2899, (2005)
[21] Hegland, M.; Garcke, J., On the numerical solution of the chemical master equation with sums of rank one tensors, ANZIAM J., 52, 628-643, (2011)
[22] Hellander, S.; Hellander, A.; Petzold, L., Reaction-diffusion master equation in the microscopic limit, Phys. Rev. E, 85, 4, 042901, (2012)
[23] Higham, D. J., Modeling and simulating chemical reactions, SIAM Rev., 50, 2, 347-368, (2008) · Zbl 1144.80011
[24] Jahnke, T., On reduced models for the chemical master equation, Multiscale Model. Simul., 9, 4, 1646-1676, (2011) · Zbl 1244.65005
[25] Jahnke, T.; Udrescu, T., Solving chemical master equations by adaptive wavelet compression, J. Comput. Phys., 229, 16, 5724-5741, (2010) · Zbl 1203.65104
[26] Kazeev, V.; Khammash, M.; Nip, M.; Schwab, C., Direct solution of the chemical master equation using quantized tensor trains, PLoS Comput. Biol., 10, 3, e1003359, (2014)
[27] Kazeev, V.; Schwab, C., Tensor approximation of stationary distributions of chemical reaction networks, SIAM J. Matrix Anal. Appl., 36, 3, 1221-1247, (2015) · Zbl 1322.60155
[28] Khoromskij, B. N., Tensors-structured numerical methods in scientific computing: Survey on recent advances, Chemom. Intell. Lab. Syst., 110, 1, 1-19, (2012)
[29] Kolda, T. G.; Bader, B. W., Tensor decompositions and applications, SIAM Rev., 51, 3, 455-500, (2009) · Zbl 1173.65029
[30] Kryven, I.; Röblitz, S.; Schütte, C., Solution of the chemical master equation by radial basis functions approximation with interface tracking, BMC Syst. Biol., 9, 1, 67, (2015)
[31] Levine, A. J., p53, the cellular gatekeeper for growth and division, Cell, 88, 3, 323-331, (1997)
[32] Liu, X.; Chen, L., Complex dynamics of Holling type II Lotka-Volterra predator – prey system with impulsive perturbations on the predator, Chaos Solitons Fract., 16, 2, 311-320, (2003) · Zbl 1085.34529
[33] MacNamara, S.; Bersani, A. M.; Burrage, K.; Sidje, R. B., Stochastic chemical kinetics and the total quasi-steady-state assumption: application to the stochastic simulation algorithm and chemical master equation, J. Chem. Phys., 129, 9, 09B605, (2008)
[34] MacNamara, S.; Burrage, K.; Sidje, R. B., Multiscale modeling of chemical kinetics via the master equation, Multiscale Model. Simul., 6, 4, 1146-1168, (2008) · Zbl 1153.60370
[35] Melykuti, B.; Hespanha, J. P.; Khammash, M., Equilibrium distributions of simple biochemical reaction systems for time-scale separation in stochastic reaction networks, J. R. Soc. Interface, 11, 97, (2014)
[36] Munsky, B.; Khammash, M., The finite state projection algorithm for the solution of the chemical master equation, J. Chem. Phys., 124, 4, 044104, (2006)
[37] Munsky, B.; Khammash, M., A multiple time interval finite state projection algorithm for the solution to the chemical master equation, J. Comput. Phys., 226, 1, 818-835, (2007) · Zbl 1131.82020
[38] Oseledets, I. V., Tensor-train decomposition, SIAM J. Sci. Comput., 33, 5, 2295-2317, (2011) · Zbl 1232.15018
[39] Oseledets, I. V.; Tyrtyshnikov, E. E., Breaking the curse of dimensionality, or how to use svd in many dimensions, SIAM J. Sci. Comput., 31, 5, 3744-3759, (2009) · Zbl 1200.65028
[40] Peleš, S.; Munsky, B.; Khammash, M., Reduction and solution of the chemical master equation using time scale separation and finite state projection, J. Chem. Phys., 125, 20, 204104, (2006)
[41] Puchałka, J.; Kierzek, A. M., Bridging the gap between stochastic and deterministic regimes in the kinetic simulations of the biochemical reaction networks, Biophys. J., 86, 3, 1357-1372, (2004)
[42] Qian, H., Phosphorylation energy hypothesis: open chemical systems and their biological functions, Annu. Rev. Phys. Chem., 58, 113-142, (2007)
[43] Reid, B. M., Efficient Approximation of the Stationary Solution to the Chemical Master Equation, (2019), The University of Alabama, Ph.D. thesis
[44] Schlögl, F., Chemical reaction models for non-equilibrium phase transitions, Z. Phys., 253, 2, 147-161, (1972)
[45] Schnoerr, D.; Sanguinetti, G.; Grima, R., Approximation and inference methods for stochastic biochemical kinetics—a tutorial review, J. Phys. A, 50, 9, 093001, (2017) · Zbl 1360.92051
[46] Sidje, R.; Vo, H., Solving the chemical master equation by a fast adaptive finite state projection based on the stochastic simulation algorithm, Math. Biosci., 269, 10-16, (2015) · Zbl 1351.92018
[47] Sidje, R. B., Inexact uniformization and GMRES methods for large Markov chains, Numer. Linear Algebra Appl., 18, 6, 947-960, (2011) · Zbl 1265.65011
[48] Sjöberg, P.; Lẗstedt, P.; Elf, J., Fokker-Planck approximation of the master equation in molecular biology, Comput. Visual. Sci., 12, 1, 37-50, (2007)
[49] Taylor, W. R.; Stark, G. R., Regulation of the G2/M transition by p53, Oncogene, 20, 15, 1803, (2001)
[50] Thomas, P.; Popović, N.; Grima, R., Phenotypic switching in gene regulatory networks, Proc. Natl. Acad. Sci., 111, 19, 6994-6999, (2014)
[51] Tomita, K.; Tomita, H., Irreversible circulation of fluctuation, Progress Theor. Phys., 51, 6, 1731-1749, (1974)
[52] Vellela, M.; Qian, H., Stochastic dynamics and non-equilibrium thermodynamics of a bistable chemical system: the Schlögl model revisited, J. R. Soc. Interface, 6, 39, 925-940, (2008)
[53] Vo, H. D.; Sidje, R. B., An adaptive solution to the chemical master equation using tensors, J. Chem. Phys., 147, 4, 044102, (2017)
[54] Wolf, V.; Goel, R.; Mateescu, M.; Henzinger, T. A., Solving the chemical master equation using sliding windows, BMC Syst. Biol., 4, 1, 42, (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.