×

General relativity and the standard model in scale-invariant variables. (English) Zbl 1176.83141

Summary: General Relativity and Standard Model are formulated in terms of scale-invariant variables where the initial data are integrals of motion. In this case, the Hubble law can be explained by a cosmological evolution of particle masses. Supernovae type Ia data and the CMB energy budget in the model are in agreement with the dominance of a scalar field kinetic energy density and an intensive cosmological creation of primordial \(W, Z\), and Higgs bosons from vacuum. Some arguments are discussed testifying to that two-photon processes of primordial particle annihilation and decays form three peaks in the CMB power spectrum, and their values and positions \(\ell = 220, 546, 800\) are in agreement with the QED coupling constant,Weinberg’s angle, and the Higgs particle mass of about 118 GeV.

MSC:

83F05 Relativistic cosmology
83C47 Methods of quantum field theory in general relativity and gravitational theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] J. Dunkley et al., arXiv:0803.0732; G. Hinshaw et al., arXiv:0803.0586.
[2] M. Giovannini, Int. J.Mod. Phys. D 14, 363 (2005). · Zbl 1079.83560 · doi:10.1142/S0218271805006687
[3] E.P. Wigner, Annals of Math. 40, 149 (1939); V. Bargmann, E. P. Wigner, Proc. Nat. Acad. Sci. USA 34, 211 (1948). · Zbl 0020.29601 · doi:10.2307/1968551
[4] S. Schweber,An Introduction to Relativistic Quantum Field Theory (Row, Peterson and Co, Evanston, Ill., Elmsford, N.Y, 1961). · Zbl 0111.43102
[5] N. N. Bogoliubov, A. A. Logunov, A. I. Oksak, and I. T. Todorov, General Principles of Quantum Field Theory (Moscow, Nauka, 1987, in Russian).
[6] V. I. Ogievetsky and I. V. Polubarinov, Ann. Phys. (N.Y.) 25, 358 (1963); Nouvo Cim. 23, 1273 (1962); Zh. Eksp. Teor. Fiz. 45. 237, 709, 966 (1962); Zh. Eksp. Teor. Fiz. 46, 1048 (1964). · Zbl 0127.19402 · doi:10.1016/0003-4916(63)90019-8
[7] R. Utiyama, Phys. Rev. 101, 1597 (1956); T.W. B. Kibble, J. Math. Phys. 2, 212 (1961). · Zbl 0070.22102 · doi:10.1103/PhysRev.101.1597
[8] V.A. Fock, Zs. f. Phys. 57, 261 (1929). · doi:10.1007/BF01339714
[9] P. A. M. Dirac, Proc. Roy. Soc. A 246, 333 (1958); Phys. Rev. 114, 924 (1959). · Zbl 0080.41403 · doi:10.1098/rspa.1958.0142
[10] R. Arnowitt, S. Deser, and C. W. Misner, The Dynamics of General Relativity, in: L. Witten, Gravitation: An Introduction to Current Research (Wiley, 1962), p. 227. · Zbl 1152.83320
[11] A. F. Zakharov, V. A. Zinchuk, and V. N. Pervushin, Physics of Particles and Nuclei 37, 104 (2006). · Zbl 1117.83116 · doi:10.1134/S1063779606010035
[12] B. M. Barbashov et al., Phys. Lett. B 633, 458 (2006) [hep-th/0501242]; Int. J. Mod. Phys. A 21, 5957 (2006); Int. J.Geom.Meth.Mod. Phys. 4, 171 (2007). · doi:10.1016/j.physletb.2005.12.024
[13] R. Illge and R. Schimming, Ann. der Physik 8, 319 (1999). · Zbl 0924.53050 · doi:10.1002/(SICI)1521-3889(199904)8:4<319::AID-ANDP319>3.0.CO;2-3
[14] J. A. Wheeler, in: Batelle Rencontres, 1967, Lectures in Mathematics and Physics, Ed. by C. DeWitt and J. A. Wheeler (New York, 1968); B. S. DeWitt, Phys. Rev. 160, 1113 (1967).
[15] V. N. Pervushin and V. A. Zinchuk, Physics of Atomic Nuclei 70, 590 (2007). · doi:10.1134/S1063778807030210
[16] C. Misner, Phys. Rev. 186, 1319 (1969). · Zbl 0186.28604 · doi:10.1103/PhysRev.186.1319
[17] A. Lichnerowicz, Journ.Math. Pures and Appl. B 37, 23 (1944); J. W. York (Jr.), Phys. Rev. Lett. 26, 1658 (1971); K. Kuchar, J.Math. Phys. 13, 768 (1972).
[18] A. G. Riess et al., Astron. J. 116, 1009 (1998); S. Perlmutter et al., Astrophys. J. 517, 565 (1999); A. D. Riess, L.-G. Strolger, J. Tonry et al., Astrophys. J. 607, 665 (2004). · doi:10.1086/300499
[19] D. Behnke et al., Phys. Lett. B 530, 20 (2002). · Zbl 0992.83101 · doi:10.1016/S0370-2693(02)01341-2
[20] D. Behnke, Conformal Cosmology Approach to the Problem of Dark Matter, PhD Thesis, Rostock Report MPG-VT-UR 248/04 (2004).
[21] A. F. Zakharov, A. A. Zakharova, and V. N. Pervushin, astro-ph/0611639.
[22] A. M. Khvedelidze, V. V. Papoyan, and V. N. Pervushin, Phys. Rev. D 51, 5654 (1995). · doi:10.1103/PhysRevD.51.5654
[23] F. Hoyle, A New Model for the Expanding Universe, MNRAS 108, 372 (1948); ADS Bibliographic Code:1948 MNRAS.108.372H; J. V. Narlikar, R. G. Vishwakarma, and G. Burbidge, Publ. Astron. Soc. Pac. 114, 1092 (2002).
[24] P. A. M. Dirac, Proc. Roy. Soc. Lond. A 114, 243 (1927); Can. J. Phys. 33, 650 (1955). · JFM 53.0847.01 · doi:10.1098/rspa.1927.0039
[25] P. A. M. Dirac, Proc. R. Soc. Lond. A 333, 403 (1973). · doi:10.1098/rspa.1973.0070
[26] A. B. Borisov and V. I. Ogievetsky, Teor. Mat. Fiz. 21, 329 (1974). · doi:10.1007/BF01038096
[27] M. Pawlowski and R. Raczka, Found. Phys. 24, 1305 (1994); M. Pawlowski et al., Phys. Lett. B 418, 263 (1998); R. Kallosh et al., Class. Quantum Grav. 17,4269 (2000). · doi:10.1007/BF02148570
[28] M. Piatek, V. N. Pervushin, and A.B. Arbuzov,Fizika B (Zagreb) 17, 189 (2008).
[29] A. L. Zelmanov, Dokl. AN SSSR 107, 315 (1956); Dokl. AN SSSR 209, 822 (1973); Yu. S. Vladimirov, Reference Frames in Theory of Gravitation (Moscow, Energoizdat, 1982, in Russian).
[30] A. Einstein, Sitzungsber. d. Berl. Akad. 1, 147 (1917).
[31] V. Pervushin, Acta Physica Slovakia 53, 237 (2003); D. B. Blaschke et al., Phys. Atom. Nucl. 67, 1050 (2004); Phys. Atom. Nucl. 68, 1090 (2005).
[32] N. A. Chernikov and E. A. Tagirov, Ann. Inst. H. Poincaré 9, 109 (1968); E. A. Tagirov and N. A. Chernikov, preprint P2-3777, JINR, 1967; K. A. Bronnikov and E. A. Tagirov, preprint P2-4151, JINR, 1968; Grav. Cosmol. 10, 249 (2004).
[33] L. Parker, Phys. Rev. 183, 1057 (1969). · Zbl 0186.58603 · doi:10.1103/PhysRev.183.1057
[34] A. A. Grib, S. G. Mamaev, and V. M. Mostepanenko, Quantum Effects in Strong External Fields (Energoatomizdat, Moscow, 1988); A. A. Starobinsky, Phys. Lett. B 91, 99 (1980).
[35] V. N. Pervushin and V. I. Smirichinski, J. Phys. A 32, 6191 (1999). · Zbl 0960.83016 · doi:10.1088/0305-4470/32/34/306
[36] A. B. Arbuzov et al., arXiv:0705.4672 [hep-ph].
[37] V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger, Phys. Rep. 215, 203 (1992). · doi:10.1016/0370-1573(92)90044-Z
[38] R. H. Cyburt et al., Phys. Lett. B 567, 227 (2003); K. A.Olive, G. Steigman, and T. P.Walker, Phys. Rep. 333, 389 (2000). · Zbl 01958723 · doi:10.1016/j.physletb.2003.06.026
[39] N. A. Chernikov, Phys. Lett. 5, 115 (1963); Acta. Phys. Pol. 23, 629 (1963); Acta. Phys. Pol. 26, 1069 (1964); Acta. Phys. Pol. 27, 465 (1964). · doi:10.1016/S0375-9601(63)91750-X
[40] Ingo Muller, A History of Thermodynamics: The Doctrine of Energy and Entropy (Springer Published 2007/01).
[41] S. A. Smolyansky et al., Proc. of the Conf. ”Progress in Nonequilibrium Green’s Functions”, Dresden, Germany, Aug. 19–23, 2002, Eds. by M. Bonitz and D. Semkat (World Scientific, New Jersey, London, Singapur, Hong Kong).
[42] J. Bernstein, Kinetic Theory in the Expanding Universe (CUP, 1985).
[43] L. B. Okun, Leptons and Quarks (Nauka, Moscow, 1981; North-Holland, Amsterdam, 1982).
[44] A. B. Arbuzov et al., arXiv:0802.3427 [hep-ph], submitted to Yadernaya Fizika.
[45] Yu. G. Ignatyev, Russ. Phys. J. 29, 104 (1986); Grav. Cosmol. 13, 31 (2007); Yu.G. Ignatyev and D. Yu. Ignatyev, Grav. Cosmol. 13, 101 (2007).
[46] W. J. Cocke and W. G. Tifft, Astrophys. J. 368, 383 (1991); K. Bajan, P. Flin,W. Godłowski,V. Pervushin, and A. Zorin, Spacetime &amp; Substance 4, 225 (2003). · doi:10.1086/169703
[47] M.E. Shaposhnikov, Nucl. Phys. B 287, 757 (1987); V. A. Matveev et al., Usp. Fiz. Nauk 156, 253 (1988); V. A. Rubakov and M. E. Shaposhnikov, Usp. Fiz. Nauk 166, 493 (1996). · doi:10.1016/0550-3213(87)90127-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.