# zbMATH — the first resource for mathematics

On a number of polyhex plane tilings. (Russian. English summary) Zbl 1395.52024
A polyhex is a strongly connected union of unit regular hexagons in the plane. A tiling is called a lattice tiling if there is a group of translations which acts transitively on the set of the tiles. In the paper the authors consider lattice tilings of the plane with polyhexes homeomorphic to disks. The lattice of the tiling is assumed to be a sublattice of the hexagonal lattice.
For the number of the lattice tilings of the plane with centrally symmetric polyhexes of given area, the lower and upper bounds are found in the paper.
##### MSC:
 52C20 Tilings in $$2$$ dimensions (aspects of discrete geometry) 52C05 Lattices and convex bodies in $$2$$ dimensions (aspects of discrete geometry)
Full Text:
##### References:
 [1] [1] D.  Klarner, “A Cell growth problems”, Cand. J. Math., 19 (1967), 851-863 · Zbl 0178.00904 [2] [2] M.  Gardner, Puteshestvie vo vremeni, Mir, M, 1990 [3] [3] S.  Golomb, Polimino, Mir, M, 1975 [4] [4] J.  Myers http://www.srcf.ucam.org/ jsm28/ tiling/ [5] [5] A. V. Maleev, “Algorithm and computer-program search for variants of polyhex packing in plane”, Crystallography Reports, 60:6 (2015), 986-992 [6] [6] H.  Fukuda, N.  Mutoh, G.  Nakamura, D.  Schattschneider, “Enumeration of Polyominoes, Polyiamonds and Polyhexes for Isohedral Tilings with Rotational Symmetry”, KyotoCGGT LNCS 4535 H. Ito et al. (Eds.), Springer-Verlag, Berlin, 2008, 68-78 · Zbl 1162.68746 [7] [7] M.  Gardner, “Ch. 11. Polyhexes and Polyaboloes.”, Mathematical Magic Show, New York, 1978, 146-159 [8] [8] J. V. Knop, K.  Szymanski, Ž.  Jeričević, N.  Trinajstić, “On the total number of polyhexes”, Match: Commun. Math. Chem., 16 (1984), 119-134 · Zbl 0561.05022 [9] [9] D. A. Klarner, R. L. Rivest, “A procedure for improving the upper bound for the number of n-ominoes”, Canad. J. Math., 25 (1973), 585-602 · Zbl 0261.05113 [10] [10] F.  Harary, “The cell growth problem and its attempted solutions”, Beitrage zur Grathen-theorie, Teubner, Leipzig, 1968, 49-60 · Zbl 0179.29102 [11] [11] R. C. Read, “Contributions to the cell-growth problem”, Canad. J. Math., 14 (1962), 1-20 · Zbl 0105.13510 [12] [12] H.  Fukuda, N.  Mutoh, G.  Nakamura, D.  Schattschneider, “A Method to Generate Polyominoes and Polyiamonds for Tilings with Rotational Symmetry”, Graphs and Combinatorics, 23 (2007), 259-267 · Zbl 1120.05017 [13] [13] J. R. Dias, “A Periodic Table for Polycyclic Aromatic Hydrocarbons. 1. Isomer Enumeration of Fused Polycyclic Aromatic Hydrocarbon”, J. Chem. Inf. Comput. Sci., 22 (1982), 15-22 [14] [14] J. R. Dias, “A Periodic Table for Polycyclic Aromatic Hydrocarbons. 2. Polycyclic Aromatic Hydrocarbons Conteining Tetragonal, Pentagonal”, J. Chem. Inf. Comput. Sci., 22 (1982), 15-22 [15] [15] M.  Gardner, Matematicheskie golovolomki i razvlecheniya, Mir, M, 1999 [16] [16] M.  Gardner, Matematicheskie dosugi, Mir, M, 1972 [17] [17] M.  Gardner, Matematicheskie novelly, Mir, M, 1974 [18] [18] G. C. Rhoads, “Planar tilings by polyominoes, polyhexes, and polyiamonds”, Journal of Computational and Applied Mathematics, 174 (2005), 329–353 · Zbl 1056.05034 [19] [19] A. V. Maleev, A. V. Shutov, “O chisle translyatsionnykh razbienii ploskosti na polimino“, Trudy IX Vserossiiskoi nauchnoi shkoly “Matematicheskie issledovaniya v estestvennykh naukakh”, Apatity, 2013, 101–106 [20] [20] S. Brlek, A. Frosini, S. Rinaldi, L. Vuillon, “Tilings by translation: enumeration by a rational language approach”, The electronic journal of combinatorics, 13 (2006) · Zbl 1081.05007 [21] [21] A. V. Shutov, E. V. Kolomeikina, “Otsenka chisla reshetchatykh razbienii ploskosti na tsentralno-simmetrichnye polimino zadannoi ploschadi”, Modelirovanie i Analiz Informatsionnykh Sistem, 20 (2014), 148–157, Yaroslavl [22] [22] D.  Schattschneider, “Will it Tile? Try the Conway Criterion!”, Mathematics Magazine, 53:4 (1980), 224-233 · Zbl 0461.05019 [23] [23] H.  Duminil-Copin, S.  Smirnov, “The connective constant of the honeycomb lattice equals $$\sqrt{2+\sqrt2}$$”, Annals of Mathematics, 175:3 (2012), 1653-1665 · Zbl 1253.82012 [24] [24] Yu. V. Nesterenko, A. I. Galochkin, A. B. Shidlovskii, Vvedenie v teoriyu chisel, Izdatelstvo Moskovskogo Universiteta, M, 1984 · Zbl 0862.11002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.