×

Dipole-dipole minimum energy configuration for platonic, Archimedean and Catalan solid structures. (English) Zbl 1448.78019

Summary: Several magnetic materials consisting of dipoles owe their properties to the specific nature of the dipole-dipole interaction. In the present work, we study systems of dipoles where the particles are arranged on various types of three-dimensional structures. However, these solids are not arbitrary. They constitute the well-known Platonic, Archimedean and Catalan solids. We systematically study them in order to fill a gap in the literature that does not contemplate this interaction in the previous solids, despite the fact that they are encountered in many different physical systems. In particular, in the regime of strong dipole moments where a classical treatment is possible, we shall provide not only the minimum energy but also the precise orientations of all their dipoles. We will numerically obtain the minimum energy configuration where all vertices possess the same classic dipole, either electric or magnetic.

MSC:

78A30 Electro- and magnetostatics
74F15 Electromagnetic effects in solid mechanics
52B10 Three-dimensional polytopes
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Takekoshi, T., Phys. Rev. Lett., 113, Article 205301 pp. (2014)
[2] Molony, P. K., Phys. Rev. Lett., 113, Article 255301 pp. (2014)
[3] Shimasaki, T., Phys. Rev., 91 (2015), 021401(R)
[4] Kalia, R. K.; Vashishta, P., J. Phys. C, 14, L643 (1981)
[5] Bedanov, V. M.; Gadiyak, G. V.; Lozovik, Yu. E., J. Exp. Theor. Phys., 61, 967 (1985)
[6] Groh, B.; Dietrich, S., Phys. Rev. E, 63, Article 021203 pp. (2001)
[7] Lu, X.; Wu, C.-Q.; Micheli, A.; Pupillo, G., Phys. Rev. B, 78, Article 024108 pp. (2008)
[8] Ramos, I. R.O.; Ferreira, W. P.; Munarin, F. F.; Farias, G. A.; Peeters, F. M., Phys. Rev. E, 85, Article 051404 pp. (2012)
[9] Mora, C.; Parcollet, O.; Waintal, X., Phys. Rev. B, 76, Article 064511 pp. (2007)
[10] Büchler, H. P., Phys. Rev. Lett., 98, Article 060404 pp. (2007)
[11] Astrakharchik, G. E.; Boronat, J.; Kurbakov, I. L.; Lozovik, Yu. E., Phys. Rev. Lett., 98, Article 060405 pp. (2007)
[12] Matveeva, N.; Giorgini, S., Phys. Rev. Lett., 109, Article 200401 pp. (2012)
[13] Moroni, S.; Boninsegni, M., Phys. Rev. Lett., 113, Article 240407 pp. (2014)
[14] Macia, A.; Astrakharchik, G. E.; Mazzanti, F.; Giorgini, S.; Boronat, J., Phys. Rev. A, 90, Article 043623 pp. (2014)
[15] Plischke, M.; Bergersen, B., Equilibrium Statistical Physics (2006), World Scientific: World Scientific London · Zbl 1130.82001
[16] Froltsov, V. A.; Blaak, R.; Likos, C. N.; Löwen, H., Phys. Rev. E, 68, Article 061406 pp. (2003)
[17] Froltsov, V. A., Phys. Rev. E, 71, Article 031404 pp. (2005)
[18] Luttinger, J. M.; Tisza, L., Phys. Rev., 70, 954 (1946)
[19] (Senechal, Marjorie, Shaping Space (2013), Springer-Verlag: Springer-Verlag New York) · Zbl 1267.52002
[20] Wales, D. J.; Doye, J. P.K.; Dullweber, A., Cambridge cluster database (2012)
[21] Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P., Science, 220, 671 (1983) · Zbl 1225.90162
[22] J. Batle, A.V. Shutov, A.V. Maleev, unpublished.
[23] Atiyah, M.; Sutcliffe, P., Milan J. Math., 71, 33 (2003) · Zbl 1050.52002
[24] Catalan, E., J. Éc. Polytech. Paris, 41, 1 (1865)
[25] Schläfli, L., J. Math., 20, 359 (1855)
[26] Coxeter, H. S.M., Regular Polytopes (1973), Dover: Dover New York · Zbl 0031.06502
[27] Conway, H.; Burgiel, H.; Goodman-Strass, C., The Symmetries of Things (2008), A.K. Peters: A.K. Peters Wellesley · Zbl 1173.00001
[28] Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Smalley, R. E., Nature, 318, 162 (1985)
[29] Baker, T. S.; Olson, N. H.; Fuller, S. D., Microbiol. Mol. Biol. Rev., 63, 862 (1999)
[30] Zandi, R.; Reguera, D.; Bruinsma, R. F.; Gelbart, W. M.; Rudnick, J., Proc. Natl. Acad. Sci. USA, 101, Article 15556 pp. (2004); Twarock, R., Philos. Trans. R. Soc. Lond., 364, 3357 (2006)
[31] David, W. I.F., Nature, 353, 147 (1992)
[32] Goethals, J. M.; Seidel, J. J., The football, Nieuw Arch. Wiskd., 29, 50 (1981) · Zbl 0468.51007
[33] Zhai, H.; Zhao, Y.; Li, W., Nat. Chem., 6, 727 (2014)
[34] Sigmon, Ginger E.; Unruh, Daniel K.; Ling, Jie, Angew. Chem., 48, 2727 (2009)
[35] Batle, J., Minimum energy and total dipole moment, Ann. Phys. (2020), in press · Zbl 07765103
[36] (Hahn, Theo, International Tables for Crystallography, Vol. A (1989), Kluwer Academic Publisher) · Zbl 1371.82119
[37] Cromwell, Peter R., Polyhedra (1999), Cambridge University Press · Zbl 0926.52014
[38] McCooey, David I., Visual polyhedra (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.