×

Breaking a chaotic image encryption algorithm based on perceptron model. (English) Zbl 1254.68118

Summary: Recently, a chaotic image encryption algorithm based on the perceptron model was proposed. The present paper analyzes the security of the algorithm and finds that the equivalent secret key can be reconstructed with only one pair of known-plaintext/ciphertext, which is supported by both mathematical proof and experiment results. In addition, two other security defects are also reported.

MSC:

68P25 Data encryption (aspects in computer science)
94A60 Cryptography
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Álvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos 16(8), 2129–2151 (2006) · Zbl 1192.94088 · doi:10.1142/S0218127406015970
[2] Álvarez, G., Li, S.: Cryptanalyzing a nonlinear chaotic algorithm (NCA) for image encryption. Commun. Nonlinear Sci. Numer. Simul. 14(11), 3743–3749 (2009) · Zbl 05949910 · doi:10.1016/j.cnsns.2009.02.033
[3] Atkinson, K.E.: An Introduction to Numerical Analysis. Wiley, New York (1989) · Zbl 0718.65001
[4] Chen, G., Mao, Y., Chui, C.K.: A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Solitons Fractals 21(3), 749–761 (2004) · Zbl 1049.94009 · doi:10.1016/j.chaos.2003.12.022
[5] Chen, J., Zhou, J., Wong, K.W.: A modified chaos-based joint compression and encryption scheme. IEEE Trans. Circuits Syst. II 58(2), 110–114 (2011) · doi:10.1109/TCSII.2011.2106316
[6] Chen, Z., Ip, W.H., Chan, C.Y., Yung, K.L.: Two-level chaos-based video cryptosystem on H.263 codec. Nonlinear Dyn. 62(3), 647–664 (2010) · Zbl 05876894 · doi:10.1007/s11071-010-9751-1
[7] Fridrich, J.: Symmetric ciphers based on two-dimensional chaotic maps. Int. J. Bifurc. Chaos 8(6), 1259–1284 (1998) · Zbl 0935.94019 · doi:10.1142/S021812749800098X
[8] Guo, D.H.: A new symmetric probabilistic encryption scheme based on chaotic attractors of neural networks. Appl. Intell. 10(1), 71–84 (1999) · doi:10.1023/A:1008337631906
[9] Kerckhoffs, A.: La cryptographie militaire. J. Sci. Mil. 9(1), 5–38 (1883)
[10] Leung, K.C., Li, S.L., Cheng, L.M., Chan, C.K.: A symmetric probabilistic encryption scheme based on CHNN without data expansion. Neural Process. Lett. 24(2), 93–105 (2006) · Zbl 05075716 · doi:10.1007/s11063-006-9006-9
[11] Li, C., Chen, M.Z.Q., Lo, K.T.: Breaking an image encryption algorithm based on chaos. Int. J. Bifurc. Chaos 21(7), 2067–2076 (2011) · Zbl 1248.94079 · doi:10.1142/S0218127411029641
[12] Li, C., Li, S., Álvarez, G., Chen, G., Lo, K.T.: Cryptanalysis of two chaotic encryption schemes based on circular bit shift and XOR operations. Phys. Lett. A 369(1–2), 23–30 (2007) · Zbl 1209.94044 · doi:10.1016/j.physleta.2007.04.023
[13] Li, C., Li, S., Zhang, D., Chen, G.: Cryptanalysis of a chaotic neural network based multimedia encryption scheme. In: Lecture Notes in Computer Science, vol. 3333, pp. 418–425 (2004)
[14] Li, C., Li, S., Zhang, D., Chen, G.: Chosen-plaintext cryptanalysis of a clipped-neural-network-based chaotic cipher. In: Lecture Notes in Computer Science, vol. 3497, pp. 630–636 (2005) · Zbl 1084.68664
[15] Li, S., Chen, G., Mou, X.: On the dynamical degradation of digital piecewise linear chaotic maps. Int. J. Bifurc. Chaos 15(10), 3119–3151 (2005) · Zbl 1093.37514 · doi:10.1142/S0218127405014052
[16] Lian, S.: A block cipher based on chaotic neural networks. Neurocomputing 72(4–6), 1296–1301 (2009) · Zbl 05718927 · doi:10.1016/j.neucom.2008.11.005
[17] Mislovaty, R., Klein, E., Kanter, I., Kinzel, W.: Public channel cryptography by synchronization of neural networks and chaotic maps. Phys. Rev. Lett. 91(11), 110401 (2003)
[18] Rhouma, R., Belghith, S.: Cryptanalysis of a spatiotemporal chaotic image/video cryptosystem. Phys. Lett. A 372(36), 5790–5794 (2008) · Zbl 1223.94019 · doi:10.1016/j.physleta.2008.07.042
[19] Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M., Vangel, M., Banks, D., Heckert, A., Dray, J., Vo, S.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. NIST Special Publication 800-22rev1a (2010). Available online at http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html
[20] Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949) · Zbl 1200.94005 · doi:10.1002/j.1538-7305.1949.tb00928.x
[21] Sheu, L.J.: A speech encryption using fractional chaotic systems. Nonlinear Dyn. 65(1–2), 103–108 (2011) · Zbl 1251.94013 · doi:10.1007/s11071-010-9877-1
[22] Solak, E.: Partial identification of Lorenz system and its application to key space reduction of chaotic cryptosystems. IEEE Trans. Circuits Syst. II, Express Briefs 51(10), 557–560 (2004) · doi:10.1109/TCSII.2004.834534
[23] Wang, X.Y., Yang, L., Liu, R., Kadir, A.: A chaotic image encryption algorithm based on perceptron model. Nonlinear Dyn. 62(3), 615–621 (2010) · Zbl 1209.94015 · doi:10.1007/s11071-010-9749-8
[24] Zhou, J., Au, O.C.: On the security of chaotic convolutional coder. IEEE Trans. Circuits Syst. I 58(3), 595–606 (2011) · doi:10.1109/TCSI.2010.2073852
[25] Zhou, T., Liao, X., Chen, Y.: A novel symmetric cryptography based on chaotic signal generator and a clipped neural network. In: Lecture Notes in Computer Science, vol. 3174, pp. 639–644 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.