×

Access point selection in heterogeneous wireless networks using belief propagation. (English) Zbl 1343.68021

Summary: The next generation wireless network will be composed by various heterogenous wireless access networks, such as cellular network, worldwide interoperability for microwave access (WiMAX), wireless local area network (WLAN), etc. Different access networks cooperatively provide high-bandwidth connectivity with bandwidth guarantees. This paper proposes a utility-based access point selection scheme, which selects an accessible point for each user, such that the bandwidth requirement of each user is satisfied, and also the defined utility function is maximized. Due to the NP-complete nature of the problem, the existing proposals apply the greedy method to find a solution. We find that belief propagation is an efficient tool to solve this problem, and thus, we derive the same optimization objective in a new way, and then draw a factor graph representation which describes our combinatorial optimization problem. Afterwards, we develop the belief propagation algorithm, and show that our algorithm converges. Finally, we conduct numerical experiments to evaluate the convergency and accuracy of the belief propagation in load balancing problem.

MSC:

68M10 Network design and communication in computer systems
68M14 Distributed systems
68W15 Distributed algorithms
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Ali, T.; Saquib, M.; Mollah, M. M., Performance analysis of vertical handover algorithm based on expected WLAN lifetime, 1-5 (2011)
[2] Chan A, Liew S C. Performance of VOIP over multiple co-located IEEE 802.11 wireless LANs. IEEE Trans Mobile Comput, 2009, 8: 1063-1077 · doi:10.1109/TMC.2008.176
[3] Lee S K, Sriram K, Kim K, et al. Vertical handoff decision algorithms for providing optimized performance in heterogeneous wireless networks. IEEE Trans Veh Technol, 2009, 58: 865-881 · doi:10.1109/TVT.2008.925301
[4] Tragos E Z, Tsiropoulos G, Karetsos G T, et al. Admission control for QoS support in heterogeneous 4G wireless networks. IEEE Netw, 2008, 22: 30-37 · doi:10.1109/MNET.2008.4519962
[5] Bejerano Y, Han S J. Cell breathing techniques for load balancing in wireless LANs. IEEE Trans Mobile Comput, 2009, 8: 735-749 · doi:10.1109/TMC.2009.50
[6] Bejerano Y, Han S J, Li L. Fairness and load balancing in wireless LANs using association control. IEEE/ACM Trans Netw, 2007, 15: 560-573 · doi:10.1109/TNET.2007.893680
[7] Xie J, Howitt I. Multi-domain WLAN load balancing in WLAN/WPAN interference environments. IEEE Trans Wirel Commun, 2009, 8: 4884-4894 · doi:10.1109/TWC.2009.090101
[8] Wang, H.; Ding, L. H.; Wu, P.; etal., Qos-aware load balancing in 3GPP long term evolution multi-cell networks, 1-5 (2011)
[9] Chai R, Wang X J, Chen Q B, et al. Utility-based bandwidth allocation algorithm for heterogenous wireless networks. Sci China Inf Sci, 2013, 56: 95-107 · doi:10.1007/s11432-013-4789-6
[10] Chandrasekhar V, Andrews J G, Gatherer A. Femtocell networks: a survey. IEEE Commun Mag, 2008, 46: 59-67 · doi:10.1109/MCOM.2008.4623708
[11] Sohn I, Lee S H, Andrews J G. Belief propagation for distributed downlink beamforming in cooperative MIMO cellular networks. IEEE Trans Wirel Commun, 2011, 10: 4140-4149 · doi:10.1109/TWC.2011.101210.101698
[12] Shrivastava, V.; Ahmed, N.; Rayanchu, S.; etal., CENTAUR: realizing the full potential of centralized WLANs through a hybrid data path, 297-308 (2009)
[13] Hung, K. L.; Bensaou, B., Distributed rate control and contention resolution in multi-cell IEEE 802.11 WLANs with hidden terminals, 51-60 (2010)
[14] Rangan S, Madan R. Belief propagation methods for intercell interference coordination in femtocell networks. IEEE J Sel Area Comm, 2012, 30: 631-640 · doi:10.1109/JSAC.2012.120412
[15] Kschischang F R, Frey B J, Loeliger H A. Factor graphs and the sum-product algorithm. IEEE Trans Inform Theory, 2001, 47: 498-519 · Zbl 0998.68234 · doi:10.1109/18.910572
[16] Leng M, Wu Y C. Distributed clock synchronization for wireless sensor networks using belief propagation. IEEE Trans Signal Proces, 2011, 59: 5404-5414 · Zbl 1393.94963 · doi:10.1109/TSP.2011.2162832
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.