×

A new total variation model for restoring blurred and Speckle noisy images. (English) Zbl 1362.65040

The paper is dedicated to the study of images. The authors propose a new variational model based on I-divergence for restoring blurred images with special speckle noise. The paper consists of 5 parts. In Section 4, the authors give some numerical experiments to proof that their methods performs favorably. The paper is well written and contains new and interesting results.

MSC:

65F10 Iterative numerical methods for linear systems
65F22 Ill-posedness and regularization problems in numerical linear algebra
68U10 Computing methodologies for image processing
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aubert, G. and Aujol, J. F., A variational approach to remove multiplicative noise, SIAM J. Appl. Math.68(4) (2008) 925-946. · Zbl 1151.68713
[2] Aubert, G. and Kornprobst, P., Mathematical Problems in Image Processing, , Vol. 147 (Springer, New York, 2002). · Zbl 1019.94002
[3] Bamler, R., Principles of synthetic aperture radar, in Survey in Geophysics, Vol. 21 (Wiley, 2008), pp. 147-157.
[4] Bioucas-Dias, J. M. and Figueiredo, M. A. T., Multiplicative noise removal using variable splitting and constrained optimization, IEEE Trans. Image Process.19(7) (2010) 1720-1730. · Zbl 1371.94055
[5] Buades, A., Coll, B. and Morel, J., A review of image denoising algorithms, with a new one, J. Multi. Model. Simul.4(2) (2005) 490-530. · Zbl 1108.94004
[6] Chan, T. F. and Shen, J., Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods (SIAM, Philadelphia, 2005). · Zbl 1095.68127
[7] Chartrand, T. and Asaki, T., A variational approach to reconstructing images corrupted by poisson noise, J. Math. Imaging Vision27 (2007) 257-263.
[8] Chambolle, A., An algorithm for total variation minimization and application, J. Math. Imaging Vision20 (2004) 89-97. · Zbl 1366.94048
[9] Chambolle, A. and Pock, T., A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vision40(1) (2011) 120-145. · Zbl 1255.68217
[10] Chen, P., Huang, J. and Zhang, X., A primal-dual fixed point algorithm for convex separable minimization with applications to image restoration, Inverse Problems29 (2013) 025011, 33 pp. · Zbl 1279.65075
[11] Chen, Y., Feng, W., Ranftl, R., Qiao, H. and Pock, T., A higher-order MRF based variational model for multiplicative noise reduction, IEEE Signal Process. Lett.21(11) (2014) 1370-1374.
[12] Denis, L., Tupin, F., Darbon, J. and Sigelle, M., SAR image regularization with fast approximation discrete minimization, IEEE Trans. Image Process.18(7) (2009) 1588-1600. · Zbl 1371.94110
[13] Durand, S., Fadili, J. and Nikolova, M., Multiplicative noise removal using L1 fidelity on frame coefficients, J. Math. Imaging Vision36(3) (2010) 201-226.
[14] Dong, Y., Hintermüller, M. and Neri, M., An efficient primal-dual method for l1-tv image restoration, SIAM J. Imaging Sci.2 (2009) 1168-1189. · Zbl 1187.68653
[15] Dong, Y. and Zeng, T., A convex variational model for restoring blurred images with mutiplicative noise, SIAM J. Imaging Sci.6(3) 1598-1625. · Zbl 1283.52012
[16] Elad, M. and Aharon, M., Image denoising via sparse and redundant representations over learned dictionaries, IEEE Trans. Image Process.15(12) (2006) 3736-3745.
[17] Esser, E., Zhang, X. and Chan, T., A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science, SIAM J. Imaging Sci.3(4) (2010) 1015-1046. · Zbl 1206.90117
[18] Figueiredo, M. and Bioucas-Dias, J., Restoration of poissonian images using alternating direction optimization, IEEE Trans. Image Process.19 (2010) 3133-3145. · Zbl 1371.94128
[19] Giusti, E., Minimal Surfaces and Functions of Bounded Variation (Birkhäuser Boston, Cambridge, MA, 1984). · Zbl 0545.49018
[20] Goldstein, T. and Osher, S., The split bregman algorithm for l1 regularized problems, SIAM J. Imaging Sci.2 (2009) 323-343. · Zbl 1177.65088
[21] Huang, Y. M., Ng, M. K. and Wen, Y. W., A new total variation method for multiplicative noise removal, SIAM J. Imaging Sci.2(1) (2009) 20-40. · Zbl 1187.68655
[22] Huang, Y., Lu, D. and Zeng, T., Two-step approach for the restoration of images corrupted by multiplicative noise, SIAM J. Sci. Comput.35(6) (2013) A2856-A2873. · Zbl 1291.65061
[23] Huang, Y., Moisan, L., Ng, M. K. and Zeng, T., Multiplicative noise removal via a learned dictionary, IEEE Trans. Image Process.21(11) (2012) 4534-4543. · Zbl 1373.94180
[24] Jeong, T., Woo, H. and Yun, S., Frame-based Poisson image restoration using a proximal linearized alternating direction method, Inverse Problems29 (2013) 075007, 20 pp. · Zbl 1322.94017
[25] Kornprobst, P., Deriche, R. and Aubert, G., Image sequence analysis via partial differential equations, J. Math. Imaging Vis.11 (1999) 5-26. · Zbl 0942.35057
[26] Lapini, A., Bianchi, T., Argenti, F. and Alparone, L., Blind speckle decorrelation for SAR image despeckling, IEEE Trans. Geosci. Remote Sens.52(3) (2014) 1044-1058.
[27] Liu, M. and Fan, Q., A modified convex variational model for multiplicative noise removal, J. Vis. Commun. Image Represent.36 (2016) 187-198.
[28] Lu, D., A hybrid optimization method for multiplicative noise and blur removal, J. Comput. Appl. Math.302 (2016) 224-233. · Zbl 1359.94039
[29] Lu, J., Shen, L., Xu, C. and Xu, Y., Multiplicative noise removal in imaging: An exp-model and its fixed-point proximity algorithm, Appl. Comput. Harmon. Anal.41(2) (2016) 518-539. · Zbl 1360.94043
[30] Lu, J., Ye, Z. and Zou, Y., Huber fractal image coding based on a fitting plane, IEEE Trans. Image Process.22(1) (2013) 134-145. · Zbl 1373.94265
[31] Micchelli, C. A., Shen, L. and Xu, Y., Proximity algorithms for image models: Denoising, Inverse Problems27 (2011) 045009, 30 pp. · Zbl 1216.94015
[32] Oliver, C. and Quegan, S., Understanding Synthetic Aperture Radar Imaging (SciTech Publishing, Raleigh, NC, 2004).
[33] Parrilli, S., Poderico, M., Angelino, C. V. and Verdoliva, L., A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage, IEEE Trans. Geosci. Remote Sens.50(2) (2012) 606-616.
[34] Rudin, L., Osher, S. and Fatemi, E., Nonlinear total variation based noise removal algorithms, Physica D60 (1992) 259-268. · Zbl 0780.49028
[35] Schmitt, J. M., Xiang, S. H. and Yung, K. M., Speckle in optical coherence tomography, J. Biomed. Opt.4 (1999) 95-105.
[36] Shi, J. and Osher, S., A nonlinear inverse scale space method for a convex multiplicative noise model, SIAM J. Imaging Sci.1(3) (2008) 294-321. · Zbl 1185.94018
[37] Steidl, G. and Teuber, T., Removing multiplicative noise by douglas-rachford splitting, J. Math. Imaging Vision36(2) (2010) 168-184. · Zbl 1287.94016
[38] Wagner, R. F., Smith, S. W., Sandrik, J. M. and Lopez, H., Statistics of speckle in ultrasound B-scans, IEEE Trans. Son. Ultrason.30 (1983) 147-157.
[39] Wang, F., Zhao, X. and Ng, M. K., Multiplicative noise and blur removal by framelet decomposition and \(l_1\)-based L-curve method, IEEE Trans. Image Process.25(9) (2016) 4222-4232. · Zbl 1408.94671
[40] Woo, H. and Yun, S., Alternating minimization algorithm for speckle reduction with a shifting technique, IEEE Trans. Image Process.21(4) (2012) 1701-1714. · Zbl 1373.94443
[41] Xiao, Y., Zeng, T., Yu, J. and Ng, M., Restoration of images corrupted by mixed gaussian-impulse noise via l1-l0 minimization, Pattern Recognition44(8) (2011) 1708-1728. · Zbl 1218.68191
[42] Yahya, N., Kamel, N. S. and Malik, A. S., Subspace-based technique for speckle noise reduction in SAR images, IEEE Trans. Geosci. Remote Sens.52(10) (2014) 6257-6271.
[43] Yun, S. and Woo, H., A new multiplicative denoising variational model based on \(m\) th root transformation, IEEE Trans. Image Process.21(5) (2012) 2523-2533. · Zbl 1373.94476
[44] Zeng, T. and Ng, M., On the total variation dictionary model, IEEE Trans. Image Process.19(3) (2010) 821-825. · Zbl 1371.94450
[45] Zhou, Z., Guo, Z., Dong, G., Sun, J., Zhang, D. and Wu, B., A doubly degenerate diffusion model based on the gray level indicator for multiplicative noise removal, IEEE Trans. Image Process.24(1) (2015) 249-260. · Zbl 1408.94848
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.