×

Numerical analysis of the Rayleigh-Taylor instability in an electric field. (English) Zbl 1381.76419

Summary: A numerical analysis is presented of the Rayleigh-Taylor instability (RTI) in the presence of an external electric field, with an emphasis on nonlinear phenomena associated with the evolution of complex interfacial morphology. The Poisson equation for the electric field and the Navier-Stokes equation for fluid flow field are solved simultaneously along with the Cahn-Hilliard phase field equation for interface deformation and morphology development. Numerical model is validated against the existing data and the results of linear analysis. Extensive numerical simulations are carried out for a wide range of fluid flow and electric field conditions. Computed results show that, in both linear and nonlinear regimes, a horizontal field suppresses the RTI, while a vertical electric field aggravates it. However, the vertical field does not affect the secondary instability; specifically, it does not contribute to the baroclinical generation of vorticity and consequently does not affect the roll-up formation. Linear analysis predicts that the RTI remains the same with the interchange of the dielectric constants of the two fluids, which is also confirmed by the numerical model for small interface deformations. This prediction, however, does not hold true in the nonlinear regimes in that complex interfacial morphology may evolve quite differently if the dielectric constants of two fluids are interchanged.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76E25 Stability and instability of magnetohydrodynamic and electrohydrodynamic flows
76Txx Multiphase and multicomponent flows
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abarzhi, S. I.2010Review of theoretical modelling approaches of Rayleigh-Taylor instabilities and turbulent mixing. Phil. Trans. R. Soc. Lond. A368 (1916), 1809-1828.10.1098/rsta.2010.0020 · Zbl 1192.76003 · doi:10.1098/rsta.2010.0020
[2] Barannyk, L. L., Papageorgiou, D. T. & Petropoulos, P. G.2012Suppression of Rayleigh-Taylor instability using electric fields. Math. Comput. Simul.82 (6), 1008-1016.10.1016/j.matcom.2010.11.0152903341 · Zbl 1243.78010 · doi:10.1016/j.matcom.2010.11.015
[3] Boffetta, G., Mazzino, A., Musacchio, S. & Vozella, L.2009Kolmogorov scaling and intermittency in Rayleigh-Taylor turbulence. Phys. Rev. E79, 065301. · Zbl 1188.76016
[4] Boomkamp, P. A. M. & Miesen, R. H. M.1996Classification of instabilities in parallel two-phase flow. Intl J. Multiphase Flow22 (6), 67-88.10.1016/S0301-9322(96)90005-1 · Zbl 1135.76365 · doi:10.1016/S0301-9322(96)90005-1
[5] Celani, A., Mazzino, A., Muratore-Ginanneschi, P. & Vozella, L.2009aPhase-field model for the Rayleigh-Taylor instability of immiscible fluids. J. Fluid Mech.622, 115-134.10.1017/S00221120080051202481556 · Zbl 1165.76335 · doi:10.1017/S0022112008005120
[6] Celani, A., Mazzino, A., Muratore-Ginnaneschi, P. & Vozella, L.2009bRayleigh-Taylor instability in two dimensions and phase-field method. In Advances in Turbulence XII, pp. 169-172. Springer.10.1007/978-3-642-03085-7_43
[7] Chandrasekhar, S.1961Hydrodynamic and Hydromagnetic Stability, pp. 448-453. Clarendon.
[8] Chen, S. & Doolen, G. D.1998Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech.30 (1), 329-364.10.1146/annurev.fluid.30.1.3291609606 · Zbl 1398.76180 · doi:10.1146/annurev.fluid.30.1.329
[9] Chertkov, M.2003Phenomenology of Rayleigh-Taylor turbulence. Phys. Rev. Lett.91 (11), 115001.10.1103/PhysRevLett.91.115001 · doi:10.1103/PhysRevLett.91.115001
[10] Cimpeanu, R., Papageorgiou, D. T. & Petropoulos, P. G.2014On the control and suppression of the Rayleigh-Taylor instability using electric fields. Phys. Fluids26 (2), 022105.10.1063/1.4865674 · Zbl 1321.76029 · doi:10.1063/1.4865674
[11] Craster, R. V. & Matar, O. K.2009Dynamics and stability of thin liquid films. Rev. Mod. Phys.81 (3), 1131-1198.10.1103/RevModPhys.81.1131 · doi:10.1103/RevModPhys.81.1131
[12] Daly, B. J.1967Numerical study of two fluid Rayleigh-Taylor instability. Phys. Fluids10 (2), 297-307.10.1063/1.1762109 · Zbl 0147.45806 · doi:10.1063/1.1762109
[13] Dalziel, S. B.1993Rayleigh-Taylor instability: experiments with image analysis. Dyn. Atmos. Oceans20 (1), 127-153.10.1016/0377-0265(93)90051-8 · doi:10.1016/0377-0265(93)90051-8
[14] Dimonte, G.2004Dependence of turbulent Rayleigh-Taylor instability on initial perturbations. Phys. Rev. E69 (5), 056305.
[15] Dimonte, G. & Schneider, M.2000Density ratio dependence of Rayleigh-Taylor mixing for sustained and impulsive acceleration histories. Phys. Fluids12, 304-321.10.1063/1.870309 · Zbl 1149.76361 · doi:10.1063/1.870309
[16] Ding, H., Spelt, P. D. & Shu, C.2007Diffuse interface model for incompressible two-phase flows with large density ratios. J. Comput. Phys.226 (2), 2078-2095.10.1016/j.jcp.2007.06.028 · Zbl 1388.76403 · doi:10.1016/j.jcp.2007.06.028
[17] Grandison, S., Papageorgiou, D. T. & Vanden-Broeck, J. M.2007Interfacial capillary waves in the presence of electric fields. Eur. J. Mech. (B/Fluids)26 (3), 404-421.10.1016/j.euromechflu.2006.06.0052307181 · Zbl 1370.76192 · doi:10.1016/j.euromechflu.2006.06.005
[18] Grandison, S., Papageorgiou, D. T. & Vanden-Broeck, J. M.2012The influence of electric fields and surface tension on Kelvin-Helmholtz instability in two-dimensional jets. Z. Angew. Math. Phys.63 (1), 125-144.10.1007/s00033-011-0176-62878736 · Zbl 1295.76006 · doi:10.1007/s00033-011-0176-6
[19] Guermond, J. L. & Quartapelle, L.2000A projection FEM for variable density incompressible flows. J. Comput. Phys.165 (1), 167-188.10.1006/jcph.2000.66091795396 · Zbl 0994.76051 · doi:10.1006/jcph.2000.6609
[20] He, X., Chen, S. & Zhang, R.1999A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability. J. Comput. Phys.152 (2), 642-663.10.1006/jcph.1999.62571699713 · Zbl 0954.76076 · doi:10.1006/jcph.1999.6257
[21] Hirt, C. W. & Nichols, B. D.1981Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys.39 (1), 201-225.10.1016/0021-9991(81)90145-5 · Zbl 0462.76020 · doi:10.1016/0021-9991(81)90145-5
[22] Hua, J., Lim, L. K. & Wang, C.-H.2008Numerical simulation of deformation/motion of a drop suspended in viscous liquids under influence of steady electric fields. Phys. Fluids20 (11), 113302.10.1063/1.3021065 · Zbl 1182.76333 · doi:10.1063/1.3021065
[23] Jackson, J. D.1999Classical Electrodynamics. Wiley. · Zbl 0920.00012
[24] Jacqmin, D.1999Calculation of two-phase Navier-Stokes flows using phase-field modeling. J. Comput. Phys.155 (1), 96-127.10.1006/jcph.1999.63321716497 · Zbl 0966.76060 · doi:10.1006/jcph.1999.6332
[25] Joshi, A., Radhakrishna, M. C. & Rudraiah, N.2010Rayleigh-Taylor instability in dielectric fluids. Phys. Fluids22 (6), 064102.10.1063/1.3435342 · Zbl 1190.76057 · doi:10.1063/1.3435342
[26] Kilkenny, J. D., Glendinning, S. G., Haan, S. W., Hammel, B. A., Lindl, J. D., Munro, D., Remington, B. A., Weber, S. V., Knauer, J. P. & Verdon, C. P.1994A review of the ablative stabilization of the Rayleigh-Taylor instability in regimes relevant to inertial confinement fusion. Phys. Plasmas1 (5), 1379-1389.10.1063/1.870688 · doi:10.1063/1.870688
[27] Korovin, V. M.2011Effect of tangential electric field on the evolution of the Rayleigh-Taylor instability of a dielectric liquid film. Tech. Phys.56 (10), 1390-1397.10.1134/S1063784211100112 · doi:10.1134/S1063784211100112
[28] Kull, H. J.1991Theory of the Rayleigh-Taylor instability. Phys. Rep.206 (5), 197-325.10.1016/0370-1573(91)90153-D · doi:10.1016/0370-1573(91)90153-D
[29] Layzer, D.1955On the instability of superposed fluids in a gravitational field. Astrophys. J.122, 1.10.1086/1460480071198 · doi:10.1086/146048
[30] Lee, H. G., Kim, K. & Kim, J.2011On the long time simulation of the Rayleigh-Taylor instability. Intl J. Numer. Meth. Engng85 (13), 1633-1647.10.1002/nme.3034 · Zbl 1217.76043 · doi:10.1002/nme.3034
[31] Lin, Y., Skjetne, P. & Carlson, A.2012A phase field model for multiphase electro-hydrodynamic flow. Intl J. Multiphase Flow45, 1-11.10.1016/j.ijmultiphaseflow.2012.04.002 · doi:10.1016/j.ijmultiphaseflow.2012.04.002
[32] Melcher, J. R. & Schwarz, W. J.Jr1968Interfacial relaxation overstability in a tangential electric field. Phys. Fluids11 (12), 2604-2616.10.1063/1.1691866 · doi:10.1063/1.1691866
[33] Michioka, H. & Sumita, I.2005Rayleigh-Taylor instability of a particle packed viscous fluid: implications for a solidifying magma. Geophys. Res. Lett.32 (3), L03309.10.1029/2004GL021827 · doi:10.1029/2004GL021827
[34] Mohamed, A. & El Shehawey, E. S. F.1983aNonlinear electrohydrodynamic Rayleigh-Taylor instability. II: a perpendicular field producing surface charge. Phys. Fluids26 (7), 1724-1730.10.1063/1.8643710710076 · Zbl 0536.76054 · doi:10.1063/1.864371
[35] Mohamed, A. E. M. A. & Shehawey, E. S. F.1983bNonlinear electrohydrodynamic Rayleigh-Taylor instability. Part 1. A perpendicular field in the absence of surface charges. J. Fluid Mech.129, 473-494.10.1017/S00221120830008770707996 · Zbl 0523.76044 · doi:10.1017/S0022112083000877
[36] Olson, D. H. & Jacobs, J. W.2009Experimental study of Rayleigh-Taylor instability with a complex initial perturbation. Phys. Fluids21 (3), 034103. · Zbl 1183.76392
[37] Rahmat, A., Tofighi, N., Shadloo, M. S. & Yildiz, M.2014Numerical simulation of wall bounded and electrically excited Rayleigh-Taylor instability using incompressible smoothed particle hydrodynamics. Colloid Surf. A460, 60-70.10.1016/j.colsurfa.2014.02.044 · doi:10.1016/j.colsurfa.2014.02.044
[38] Ramaprabhu, P., Dimonte, G., Woodward, P., Fryer, C., Rockefeller, G., Muthuraman, K., Lin, P.-H. & Jayaraj, J.2012The late-time dynamics of the single-mode Rayleigh-Taylor instability. Phys. Fluids24 (7), 074107.10.1063/1.4733396 · doi:10.1063/1.4733396
[39] Rayleigh, Lord1883Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc.14, 170-177.1576251 · JFM 15.0848.02
[40] Rayleigh, Lord1900Scientific Papers. vol. II. Cambridge University Press. · JFM 31.0031.04
[41] Renoult, M. C., Petschek, R. G., Rosenblatt, C. & Carlès, P.2011Deforming static fluid interfaces with magnetic fields: application to the Rayleigh-Taylor instability. Exp. Fluids51 (4), 1073-1083.10.1007/s00348-011-1125-z · doi:10.1007/s00348-011-1125-z
[42] Ribeyre, X., Tikhonchuk, V. T. & Bouquet, S.2004Compressible Rayleigh-Taylor instabilities in supernova remnants. Phys. Fluids16 (12), 4661-4670.10.1063/1.1810182 · Zbl 1187.76446 · doi:10.1063/1.1810182
[43] Saville, D. A.1997Electrohydrodynamics: the Taylor-Melcher leaky dielectric model. Annu. Rev. Fluid Mech.29, 27-64.10.1146/annurev.fluid.29.1.271435033 · doi:10.1146/annurev.fluid.29.1.27
[44] Schneider, M. B., Dimonte, G. & Remington, B.1998Large and small scale structure in Rayleigh-Taylor mixing. Phys. Rev. Lett.80 (16), 3507.10.1103/PhysRevLett.80.3507 · doi:10.1103/PhysRevLett.80.3507
[45] Sharp, D. H.1984An overview of Rayleigh-Taylor instability. Physica D12 (1), 3-18. · Zbl 0577.76047
[46] Sohn, S. I.2009Effects of surface tension and viscosity on the growth rates of Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Phys. Rev. E80 (5), 055302.
[47] Taylor, G.1950The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. Lond. A201 (1065), 192-196.10.1098/rspa.1950.0052 · Zbl 0038.12201 · doi:10.1098/rspa.1950.0052
[48] Taylor, G. I. & Mcewan, A. D.1965The stability of a horizontal fluid interface in a vertical electric field. J. Fluid Mech.22 (01), 1-15.10.1017/S0022112065000538 · Zbl 0129.20604 · doi:10.1017/S0022112065000538
[49] Thorpe, A. J., Volkert, H. & Ziemianski, M. J.2003The Bjerknes’ circulation theorem: a historical perspective. Bull. Am. Meteorol. Soc.4, 471-480.10.1175/BAMS-84-4-471 · doi:10.1175/BAMS-84-4-471
[50] Tomar, G., Gerlach, D., Biswas, G., Alleborn, N., Sharma, A., Durst, F., Welch, S. W. J. & Delgado, A.2007Two-phase electrohydrodynamic simulations using a volume-of-fluid approach. J. Comput. Phys.227 (2), 1267-1285.10.1016/j.jcp.2007.09.0032442395 · Zbl 1126.76044 · doi:10.1016/j.jcp.2007.09.003
[51] Tryggvason, G.1988Numerical simulations of the Rayleigh-Taylor instability. J. Comput. Phys.75 (2), 253-282.10.1016/0021-9991(88)90112-X · Zbl 0638.76056 · doi:10.1016/0021-9991(88)90112-X
[52] White, J., Oakley, J., Anderson, M. & Bonazza, R.2010Experimental measurements of the nonlinear Rayleigh-Taylor instability using a magnetorheological fluid. Phys. Rev. E81 (2), 026303.
[53] Wu, N. & Russel, W. B.2009Micro-and nano-patterns created via electrohydrodynamic instabilities. Nano Today4 (2), 180-192.10.1016/j.nantod.2009.02.002 · doi:10.1016/j.nantod.2009.02.002
[54] Yang, Q., Li, B. Q. & Ding, Y.20133D phase field modeling of electrohydrodynamic multiphase flows. Intl J. Multiphase Flow57, 1-9.10.1016/j.ijmultiphaseflow.2013.06.006 · doi:10.1016/j.ijmultiphaseflow.2013.06.006
[55] Yang, Q., Li, B. Q., Shao, J. & Ding, Y.2014A phase field numerical study of 3D bubble rising in viscous fluids under an electric field. Intl J. Heat Mass Transfer78, 820-829.10.1016/j.ijheatmasstransfer.2014.07.039 · doi:10.1016/j.ijheatmasstransfer.2014.07.039
[56] Yih, C. S.1967Instability due to viscosity stratification. J. Fluid Mech.27 (02), 337-352.10.1017/S0022112067000357 · Zbl 0144.47102 · doi:10.1017/S0022112067000357
[57] Youngs, D. L.1984Numerical simulation of turbulent mixing by Rayleigh-Taylor instability. Physica D12 (1), 32-44.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.