×

On the connection between quantum nonlocality and phase sensitivity of two-mode entangled Fock state superpositions. (English) Zbl 1338.81075

Summary: In two-mode interferometry, for a given total photon number \(N\), entangled Fock state superpositions of the form \((|N-m\rangle_a|m\rangle_b+\mathrm{e}^{i (N-2m)\phi}|m\rangle_a|N-m\rangle_b)/\sqrt{2}\) have been considered for phase estimation. Indeed all such states are maximally mode-entangled and violate a Clauser-Horne-Shimony-Holt (CHSH) inequality. However, they differ in their optimal phase estimation capabilities as given by their quantum Fisher informations. The quantum Fisher information is the largest for the \(N\)00\(N\) state \((|N\rangle_a|0\rangle_b+\mathrm{e}^{i N\phi}|0\rangle_a|N\rangle_b)/\sqrt{2}\) and decreases for the other states with decreasing photon number difference between the two modes. We ask the question whether for any particular Clauser-Horne (CH) (or CHSH) inequality, the maximal values of the CH (or the CHSH) functional for the states of the above type follow the same trend as their quantum Fisher informations, while also violating the classical bound whenever the states are capable of sub-shot-noise phase estimation, so that the violation can be used to quantify sub-shot-noise sensitivity. We explore CH and CHSH inequalities in a homodyne setup. Our results show that the amount of violation in those nonlocality tests may not be used to quantify sub-shot-noise sensitivity of the above states.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
81P05 General and philosophical questions in quantum theory
81P15 Quantum measurement theory, state operations, state preparations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Pan, J.-W., Chen, Z.-B., Chao-Yang, L., Weinfurter, H., Zeilinger, A., Żukowski, M.: Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777-838 (2012) · doi:10.1103/RevModPhys.84.777
[2] Pezzé, L., Smerzi, A.: Mach-Zehnder interferometry at the Heisenberg limit with coherent and squeezed-vacuum light. Phys. Rev. Lett. 100(7), 073601 (2008) · doi:10.1103/PhysRevLett.100.073601
[3] Pezzé, L., Smerzi, A.: Entanglement, nonlinear dynamics, and the heisenberg limit. Phys. Rev. Lett. 102, 100401 (2009) · doi:10.1103/PhysRevLett.102.100401
[4] Plenio, M.B.: Logarithmic negativity: a full entanglement monotone that is not convex. Phys. Rev. Lett. 95, 090503 (2005) · doi:10.1103/PhysRevLett.95.090503
[5] Anisimov, P.M., Raterman, G.M., Chiruvelli, A., Plick, W.N., Huver, S.D., Lee, H., Dowling, J.P.: Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit. Phys. Rev. Lett. 104, 103602 (2010) · doi:10.1103/PhysRevLett.104.103602
[6] Birrittella, R., Mimih, J., Gerry, C.C.: Multiphoton quantum interference at a beam splitter and the approach to Heisenberg-limited interferometry. Phys. Rev. A 86, 063828 (2012) · doi:10.1103/PhysRevA.86.063828
[7] Dowling, J.P.: Quantum optical metrology—the lowdown on high-N00N states. Contemp. Phys. 49(2), 125-143 (2008) · doi:10.1080/00107510802091298
[8] Gerry, C.C., Knight, P.L.: Introductory Quantum Optics. Cambridge University Press, Cambridge (2005)
[9] Holland, M.J., Burnett, K.: Interferometric detection of optical phase shifts at the Heisenberg limit. Phys. Rev. Lett. 71(9), 1355-1358 (1993) · doi:10.1103/PhysRevLett.71.1355
[10] Joo, J., Munro, W.J., Spiller, T.P.: Quantum metrology with entangled coherent states. Phys. Rev. Lett. 107, 083601 (2011) · doi:10.1103/PhysRevLett.107.083601
[11] Ono, T., Hofmann, H.F.: Effects of photon losses on phase estimation near the Heisenberg limit using coherent light and squeezed vacuum. Phys. Rev. A 81(3), 033819 (2010) · doi:10.1103/PhysRevA.81.033819
[12] Seshadreesan, K.P., Anisimov, P.M., Lee, H., Dowling, J.P.: Parity detection achieves the heisenberg limit in interferometry with coherent mixed with squeezed vacuum light. New J. Phys. 13(8), 083026 (2011) · doi:10.1088/1367-2630/13/8/083026
[13] Uys, H., Meystre, P.: Quantum states for Heisenberg-limited interferometry. Phys. Rev. A 76, 013804 (2007) · doi:10.1103/PhysRevA.76.013804
[14] Huver, S.D., Wildfeuer, C.F., Dowling, J.P.: Entangled fock states for robust quantum optical metrology, imaging, and sensing. Phys. Rev. A 78, 063828 (2008) · doi:10.1103/PhysRevA.78.063828
[15] Hyllus, P., Gühne, O., Smerzi, A.: Not all pure entangled states are useful for sub-shot-noise interferometry. Phys. Rev. A 82, 012337 (2010) · doi:10.1103/PhysRevA.82.012337
[16] Jiang, K., Brignac, C.J., Weng, Y., Kim, M.B., Lee, H., Dowling, J.P.: Strategies for choosing path-entangled number states for optimal robust quantum-optical metrology in the presence of loss. Phys. Rev. A 86, 013826 (2012) · doi:10.1103/PhysRevA.86.013826
[17] Bhaskar, R.B., Jiang, K., Dowling, J.P.: Effectsof phase fluctuations on phase sensitivity and visibility of path-entangled photon fock states. Phys. Rev. A 88, 023857 (2013) · doi:10.1103/PhysRevA.88.023857
[18] Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006) · doi:10.1103/PhysRevLett.96.010401
[19] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1, 195 (1964)
[20] Genovese, M.: Research on hidden variable theories: a review of recent progresses. Phys. Rep. 413, 319 (2005) · doi:10.1016/j.physrep.2005.03.003
[21] Gisin, N.: Bell’s inequality holds for all non-product states. Phys. Lett. A 154(5-6), 201-202 (1991) · doi:10.1016/0375-9601(91)90805-I
[22] Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277-4281 (1989) · Zbl 1371.81145 · doi:10.1103/PhysRevA.40.4277
[23] Yu, S., Chen, Q., Zhang, C., Lai, C.H., Oh, C.H.: All entangled pure states violate a single bell’s inequality. Phys. Rev. Lett. 109, 120402 (2012) · doi:10.1103/PhysRevLett.109.120402
[24] Gilchrist, A., Deuar, P., Reid, M.D.: Contradiction of quantum mechanics with local hidden variables for quadrature phase amplitude measurements. Phys. Rev. Lett. 80, 3169-3172 (1998) · doi:10.1103/PhysRevLett.80.3169
[25] Munro, W.J.: Optimal states for bell-inequality violations using quadrature-phase homodyne measurements. Phys. Rev. A 59, 4197-4201 (1999) · doi:10.1103/PhysRevA.59.4197
[26] Clauser, J.F., Horne, M.A.: Experimental consequences of objective local theories. Phys. Rev. D 10, 526-535 (1974) · doi:10.1103/PhysRevD.10.526
[27] Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880-884 (1969) · Zbl 1371.81014 · doi:10.1103/PhysRevLett.23.880
[28] Banaszek, K., Wódkiewicz, K.: Testing quantum nonlocality in phase space. Phys. Rev. Lett. 82, 2009-2013 (1999) · Zbl 1031.81508 · doi:10.1103/PhysRevLett.82.2009
[29] Wildfeuer, C.F., Lund, A.P., Dowling, J.P.: Strong violations of bell-type inequalities for path-entangled number states. Phys. Rev. A 76, 052101 (2007) · Zbl 1255.81039 · doi:10.1103/PhysRevA.76.052101
[30] Gerry, C.C., Mimih, J., Benmoussa, A.: Maximally entangled coherent states and strong violations of bell-type inequalities. Phys. Rev. A 80, 022111 (2009) · Zbl 1255.81060 · doi:10.1103/PhysRevA.80.022111
[31] Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002) · doi:10.1103/PhysRevA.65.032314
[32] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000) · Zbl 1049.81015
[33] Cirel’son, B.S.: Quantum generalizations of bell’s inequality. Lett. Math. Phys. 4(2), 93-100 (1980) · doi:10.1007/BF00417500
[34] Gisin, N., Peres, A.: Maximal violation of bell’s inequality for arbitrarily large spin. Phys. Lett. A 162(1), 15-17 (1992) · doi:10.1016/0375-9601(92)90949-M
[35] Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72(22), 3439-3443 (1994) · Zbl 0973.81509 · doi:10.1103/PhysRevLett.72.3439
[36] Braunstein, S.L., Caves, C.M., Milburn, G.J.: Generalized uncertainty relations: theory, examples, and Lorentz invariance. Ann. Phys. 247, 135 (1996) · Zbl 0881.47046 · doi:10.1006/aphy.1996.0040
[37] Gerry, C.C., Mimih, J.: The parity operator in quantum optical metrology. Contemp. Phys. 51(6), 497-511 (2010) · doi:10.1080/00107514.2010.509995
[38] Arfken, G., Weber, H.: Mathematical Methods for Physicists, Chap. 13, 3rd edn. Academic Press, London (1985) · Zbl 1066.00001
[39] de Oliveira, F.A.M., Kim, M.S., Knight, P.L., Buzek, V.: Properties of displaced number states. Phys. Rev. A 41, 2645-2652 (1990) · Zbl 0709.90696 · doi:10.1103/PhysRevA.41.2645
[40] Wunsche, A.: Displaced fock states and their connection to quasiprobabilities. Quantum Opt. 3, 359-383 (1991) · doi:10.1088/0954-8998/3/6/005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.