Lafond, Manuel; Seamone, Ben Hamiltonian chordal graphs are not cycle extendable. (English) Zbl 1314.05104 SIAM J. Discrete Math. 29, No. 2, 877-887 (2015). Cited in 4 Documents MSC: 05C38 Paths and cycles 05C45 Eulerian and Hamiltonian graphs Keywords:cycles; cycle extendibility; chordal graphs; Hamiltonian graphs; Hendry’s conjecture PDF BibTeX XML Cite \textit{M. Lafond} and \textit{B. Seamone}, SIAM J. Discrete Math. 29, No. 2, 877--887 (2015; Zbl 1314.05104) Full Text: DOI arXiv References: [1] A. Abueida, A. Busch, and R. Sritharan, Hamiltonian spider intersection graphs are cycle extendable, SIAM J. Discrete Math., 27 (2013), pp. 1913–1923. · Zbl 1301.05193 [2] A. Abueida and R. Sritharan, Cycle extendability and hamiltonian cycles in chordal graph classes, SIAM J. Discrete Math., 20 (2006), pp. 669–681. · Zbl 1122.05049 [3] J. A. Bondy, Pancyclic graphs. I, J. Combin. Theory Ser. B, 11 (1971), pp. 80–84. · Zbl 0183.52301 [4] A. Brandstädt, V. B. Le, and J. P. Spinrad, Graph Classes: A Survey, SIAM, Philadelphia, 1999. [5] G. Chartrand and R. E. Pippert, Locally connected graphs, Časopis Pěst. Mat., 99 (1974), pp. 158–163. · Zbl 0278.05113 [6] G. Chen, R. J. Faudree, R. J. Gould, and M. S. Jacobson, Cycle extendability of Hamiltonian interval graphs, SIAM J. Discrete Math., 20 (2006), pp. 682–689. · Zbl 1123.05053 [7] L. Clark, Hamiltonian properties of connected locally connected graphs, in Proceedings of the 12th Southeastern Conference on Combinatorics, Graph Theory, and Computing, Vol. I, Baton Rouge, LA, 1981, pp. 199–204. · Zbl 0495.05041 [8] G. A. Dirac, On rigid circuit graphs, Abh. Math. Semin. Univ. Hamb., 25 (1961), pp. 71–76. · Zbl 0098.14703 [9] M. Farber, Characterizations of strongly chordal graphs, Discrete Math., 43 (1983), pp. 173–189. · Zbl 0514.05048 [10] D. Fulkerson and O. Gross, Incidence matrices and interval graphs., Pacific J. Math., 15 (1965), pp. 835–855. · Zbl 0132.21001 [11] V. S. Gordon, Y. L. Orlovich, C. N. Potts, and V. A. Strusevich, Hamiltonian properties of locally connected graphs with bounded vertex degree, Discrete Appl. Math., 159 (2011), pp. 1759–1774. · Zbl 1228.05200 [12] G. R. T. Hendry, Extending cycles in graphs, Discrete Math., 85 (1990), pp. 59–72. · Zbl 0714.05038 [13] T. Jiang, Planar Hamiltonian chordal graphs are cycle extendable, Discrete Math., 257 (2002), pp. 441–444. · Zbl 1015.05039 [14] Z. Ryjáček, Almost claw-free graphs, J. Graph Theory, 18 (1994), pp. 469–477. · Zbl 0808.05067 [15] J. Wang and M. Li, Fully cycle extendability of \(K_{1,4}\)-restricted graphs, Discrete Math., 309 (2009), pp. 4011–4016. · Zbl 1229.05186 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.