×

zbMATH — the first resource for mathematics

Hamiltonian chordal graphs are not cycle extendable. (English) Zbl 1314.05104

MSC:
05C38 Paths and cycles
05C45 Eulerian and Hamiltonian graphs
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] A. Abueida, A. Busch, and R. Sritharan, Hamiltonian spider intersection graphs are cycle extendable, SIAM J. Discrete Math., 27 (2013), pp. 1913–1923. · Zbl 1301.05193
[2] A. Abueida and R. Sritharan, Cycle extendability and hamiltonian cycles in chordal graph classes, SIAM J. Discrete Math., 20 (2006), pp. 669–681. · Zbl 1122.05049
[3] J. A. Bondy, Pancyclic graphs. I, J. Combin. Theory Ser. B, 11 (1971), pp. 80–84. · Zbl 0183.52301
[4] A. Brandstädt, V. B. Le, and J. P. Spinrad, Graph Classes: A Survey, SIAM, Philadelphia, 1999.
[5] G. Chartrand and R. E. Pippert, Locally connected graphs, Časopis Pěst. Mat., 99 (1974), pp. 158–163. · Zbl 0278.05113
[6] G. Chen, R. J. Faudree, R. J. Gould, and M. S. Jacobson, Cycle extendability of Hamiltonian interval graphs, SIAM J. Discrete Math., 20 (2006), pp. 682–689. · Zbl 1123.05053
[7] L. Clark, Hamiltonian properties of connected locally connected graphs, in Proceedings of the 12th Southeastern Conference on Combinatorics, Graph Theory, and Computing, Vol. I, Baton Rouge, LA, 1981, pp. 199–204. · Zbl 0495.05041
[8] G. A. Dirac, On rigid circuit graphs, Abh. Math. Semin. Univ. Hamb., 25 (1961), pp. 71–76. · Zbl 0098.14703
[9] M. Farber, Characterizations of strongly chordal graphs, Discrete Math., 43 (1983), pp. 173–189. · Zbl 0514.05048
[10] D. Fulkerson and O. Gross, Incidence matrices and interval graphs., Pacific J. Math., 15 (1965), pp. 835–855. · Zbl 0132.21001
[11] V. S. Gordon, Y. L. Orlovich, C. N. Potts, and V. A. Strusevich, Hamiltonian properties of locally connected graphs with bounded vertex degree, Discrete Appl. Math., 159 (2011), pp. 1759–1774. · Zbl 1228.05200
[12] G. R. T. Hendry, Extending cycles in graphs, Discrete Math., 85 (1990), pp. 59–72. · Zbl 0714.05038
[13] T. Jiang, Planar Hamiltonian chordal graphs are cycle extendable, Discrete Math., 257 (2002), pp. 441–444. · Zbl 1015.05039
[14] Z. Ryjáček, Almost claw-free graphs, J. Graph Theory, 18 (1994), pp. 469–477. · Zbl 0808.05067
[15] J. Wang and M. Li, Fully cycle extendability of \(K_{1,4}\)-restricted graphs, Discrete Math., 309 (2009), pp. 4011–4016. · Zbl 1229.05186
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.