×

Measurement uncertainty for finite quantum observables. (English) Zbl 1360.81041

Summary: Measurement uncertainty relations are lower bounds on the errors of any approximate joint measurement of two or more quantum observables. The aim of this paper is to provide methods to compute optimal bounds of this type. The basic method is semidefinite programming, which we apply to arbitrary finite collections of projective observables on a finite dimensional Hilbert space. The quantification of errors is based on an arbitrary cost function, which assigns a penalty to getting result \(x\) rather than \(y\), for any pair \((x,y)\). This induces a notion of optimal transport cost for a pair of probability distributions, and we include an appendix with a short summary of optimal transport theory as needed in our context. There are then different ways to form an overall figure of merit from the comparison of distributions. We consider three, which are related to different physical testing scenarios. The most thorough test compares the transport distances between the marginals of a joint measurement and the reference observables for every input state. Less demanding is a test just on the states for which a “true value” is known in the sense that the reference observable yields a definite outcome. Finally, we can measure a deviation as a single expectation value by comparing the two observables on the two parts of a maximally-entangled state. All three error quantities have the property that they vanish if and only if the tested observable is equal to the reference. The theory is illustrated with some characteristic examples.

MSC:

81P15 Quantum measurement theory, state operations, state preparations
81P13 Contextuality in quantum theory
62J10 Analysis of variance and covariance (ANOVA)
46G10 Vector-valued measures and integration
82C70 Transport processes in time-dependent statistical mechanics

Software:

CVX
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DOI: 10.1007/BF01397280 · doi:10.1007/BF01397280
[2] DOI: 10.1007/BF01391200 · doi:10.1007/BF01391200
[3] Werner, The uncertainty relation for joint measurement of position and momentum, Quant. Inform. Comput. 4 pp 546– (2004) · Zbl 1213.81106
[4] DOI: 10.1016/j.physleta.2003.12.001 · Zbl 02023560 · doi:10.1016/j.physleta.2003.12.001
[5] DOI: 10.1103/RevModPhys.86.1261 · doi:10.1103/RevModPhys.86.1261
[6] DOI: 10.1023/A:1026659601439 · Zbl 0965.81005 · doi:10.1023/A:1026659601439
[7] DOI: 10.1103/PhysRevLett.111.160405 · doi:10.1103/PhysRevLett.111.160405
[8] Ozawa, Disproving Heisenberg’s error-disturbance relation (2013)
[9] DOI: 10.1063/1.4871444 · Zbl 1304.81019 · doi:10.1063/1.4871444
[10] DOI: 10.3390/e18050174 · doi:10.3390/e18050174
[11] Busch, Approximate joint measurement of qubit observables, Quantum Inf. Comput. 8 pp 0797– (2008) · Zbl 1236.81017
[12] Bullock, Incompatibillity and error relations for qubit observables (2015)
[13] DOI: 10.1103/PhysRevA.89.012129 · doi:10.1103/PhysRevA.89.012129
[14] DOI: 10.1088/1367-2630/17/9/093046 · doi:10.1088/1367-2630/17/9/093046
[16] Sharp uncertainty relations for number and anglehttp://arxiv.org/abs/1604.00566
[17] DOI: 10.1063/1.526310 · Zbl 0557.43003 · doi:10.1063/1.526310
[18] Vandenberghe, Convex Optimization (2004)
[19] DOI: 10.1137/1038003 · Zbl 0845.65023 · doi:10.1137/1038003
[20] CVX: Matlab Software for Disciplined Convex Programming, Version 2.1http://cvxr.com/cvx
[21] Grant, Graph implementations for nonsmooth convex programs, Recent Advances in Learning and Control pp 95– (2008) · Zbl 1205.90223
[22] Rockafellar, Convex Analysis (1970)
[23] DOI: 10.2140/pjm.1954.4.65 · Zbl 0055.10004 · doi:10.2140/pjm.1954.4.65
[24] DOI: 10.2140/pjm.1958.8.171 · Zbl 0081.11502 · doi:10.2140/pjm.1958.8.171
[25] DOI: 10.1016/0047-259X(73)90028-6 · Zbl 0275.62004 · doi:10.1016/0047-259X(73)90028-6
[26] DOI: 10.1109/TIT.1975.1055351 · Zbl 0301.94001 · doi:10.1109/TIT.1975.1055351
[27] Villani, Optimal Transport: Old and New (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.