×

Sparse adaptive finite elements for radiative transfer. (English) Zbl 1147.65095

The linear radiative transfer equation, a partial differential equation for the radiation intensity \(u(\mathbf{x,s})\), with independent variables \({\mathbf x}\in D\subset \mathbb R^n\) in the physical domain \(D\) of dimension \(n=2,3\), and angular variable \({\mathbf s}\in S^2:=\{{\mathbf y}\in\mathbb R^3:|{\mathbf y}|=1\}\), is solved in the \(n+2\)-dimensional computational domain \(D\times S^2\). We propose an adaptive multilevel Galerkin finite element method (FEM) for its numerical solution. Our approach is based on (a) a stabilized variational formulation of the transport operator, (b) on so-called sparse tensor products of two hierarchic families of finite element spaces in \(H^1(D)\) and in \(L^2(S^2)\), respectively, and (c) on wavelet thresholding techniques to adapt the discretization to the underlying problem.
An a priori error analysis shows, under strong regularity assumptions on the solution, that the sparse tensor product method is clearly superior to a discrete ordinates method, as it converges with essentially optimal asymptotic rates while its complexity grows essentially only as that for a linear transport problem in \(\mathbb R^n\). Numerical experiments for \(n=2\) on a set of example problems agree with the convergence and complexity analysis of the method and show that introducing adaptivity can improve performance in terms of accuracy vs. number of degrees even further.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65T60 Numerical methods for wavelets
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
85A25 Radiative transfer in astronomy and astrophysics
35J25 Boundary value problems for second-order elliptic equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Modest, M. F., Radiative Heat Transfer (2003), Academic Press: Academic Press Amsterdam
[2] Siegel, R.; Howell, J. R., Thermal Radiation Heat Transfer (2002), Taylor and Francis: Taylor and Francis New York
[3] Wehrse, R.; Kalkofen, W., Advances in radiative transfer, Astron. Astrophys. Rev., 12, 1/2, 3-29 (2006)
[4] Manteuffel, T. A.; Ressel, K. J.; Starke, G., A boundary functional for the least-squares finite-element solution of neutron transport problems, SIAM J. Numer. Anal., 37, 2, 556-586 (2000) · Zbl 0949.65142
[5] G. Kanschat, Parallel and adaptive Galerkin methods for radiative transfer problems, Ph.D. thesis, University of Heidelberg, 1996.; G. Kanschat, Parallel and adaptive Galerkin methods for radiative transfer problems, Ph.D. thesis, University of Heidelberg, 1996.
[6] Bellmann, R., Adaptive Control Processes: A Guided Tour (1961), Princeton University Press: Princeton University Press Princeton
[7] Jiang, B., Non-oscillatory and non-diffusive solution of convection problems by the iteratively reweighted least squares finite element method, J. Comp. Phys., 105, 108-121 (1993) · Zbl 0768.65072
[8] Manteuffel, T. A.; Ressel, K. J., Least-squares finite-element solution of the neutron transport equation in diffusive regimes, SIAM J. Numer. Anal., 35, 2, 806-835 (1998) · Zbl 0956.65125
[9] Bourhrara, L., New variational formulations for the neutron transport equation, Trans. Theory Stat. Phys., 33, 2, 93-124 (2004) · Zbl 1127.82315
[10] C. Zenger, Sparse grids, in: Parallel Algorithms for Partial Differential Equations, Proceedings of the Sixth GAMM-Seminar, Kiel, Vieweg-Verlag, 1990, pp. 241-251.; C. Zenger, Sparse grids, in: Parallel Algorithms for Partial Differential Equations, Proceedings of the Sixth GAMM-Seminar, Kiel, Vieweg-Verlag, 1990, pp. 241-251. · Zbl 0763.65091
[11] Gerstner, T.; Griebel, M., Numerical integration using sparse grids, Numer. Algorithms, 18, 3-4, 209-232 (1998) · Zbl 0921.65022
[12] Yserentant, H., Sparse grid spaces for the numerical solution of the electronic Schrödinger equation, Numer. Math., 101, 2, 381-389 (2005) · Zbl 1084.65125
[13] Griebel, M., Adaptive sparse grid multilevel methods for elliptic pdes based on finite differences, Computing, 61, 2, 151-179 (1998) · Zbl 0918.65078
[14] Hoang, V. H.; Schwab, C., High-dimensional finite elements for elliptic problems with multiple scales, Multiscale Model. Simul., 3, 1, 168-194 (2005) · Zbl 1074.65135
[15] Von Petersdorff, T.; Schwab, C., Numerical solution of parabolic equations in high dimensions, M2AN Math. Model. Numer. Anal., 38, 1, 93-127 (2004) · Zbl 1083.65095
[16] Bungartz, H.-J., A multigrid algorithm for higher order finite elements on sparse grids, Electron. Trans. Numer. Anal., 6, 63-77 (1997) · Zbl 0903.65087
[17] Griebel, M.; Oswald, P.; Schiekofer, T., Sparse grids for boundary integral equations, Numer. Math., 83, 2, 279-312 (1999) · Zbl 0935.65131
[18] DeVore, R., Nonlinear approximation, Acta Numer., 7, 51-150 (1998) · Zbl 0931.65007
[19] Balder, R.; Zenger, C., The solution of multidimensional real Helmholtz equations on sparse grids, SIAM J. Sci. Comput., 17, 3, 631-646 (1996) · Zbl 0855.65111
[20] Nordmans, J.; Hemker, P. W., Application of an adaptive sparse-grid technique to a model singular perturbation problem, Computing, 65, 357-378 (2000) · Zbl 0986.65118
[21] Cohen, A.; Dahmen, W.; DeVore, R., Adaptive wavelet methods for elliptic operator equations: convergence rates, Math. Comp., 70, 233, 27-75 (2000) · Zbl 0980.65130
[22] Cohen, A.; Dahmen, W.; DeVore, R., Adaptive wavelet methods ii – beyond the elliptic case, Found. Comput. Math., 2, 3, 203-245 (2002) · Zbl 1025.65056
[23] Gantumur, T.; Harbrecht, H.; Stevenson, R., An optimal adaptive wavelet method without coarsening of the iterands, Math. Comp., 76, 258, 615-629 (2007) · Zbl 1115.41023
[24] Cohen, A.; Dahmen, W.; DeVore, R., Adaptive Wavelet Techniques in Numerical Simulation (2004), John Wiley and Sons Ltd.: John Wiley and Sons Ltd. New York
[25] Johnson, C., Numerical Solution of Partial Differential Equations by the Finite Element Method (1987), Cambridge University Press: Cambridge University Press Cambridge, UK
[26] G. Widmer, R. Hiptmair, C. Schwab, Sparse adaptive finite elements for radiative transfer, Tech. Rep. 2007-01, SAM, ETH Zürich, Zürich, Switzerland, 2007.; G. Widmer, R. Hiptmair, C. Schwab, Sparse adaptive finite elements for radiative transfer, Tech. Rep. 2007-01, SAM, ETH Zürich, Zürich, Switzerland, 2007. · Zbl 1147.65095
[27] Cessenat, M., Théorèmes de trace pour des espaces de fonctions de la neutronique, C.R. Acad. Sci. Paris Sér. I Math., 299, 16, 831-834 (1984) · Zbl 0568.46030
[28] Cessenat, M., Théorèmes de trace pour des espaces de fonctions de la neutronique, C.R. Acad. Sci. Paris Sér. I Math., 300, 3, 831-834 (1985) · Zbl 0568.46030
[29] Dautray, R.; Lions, J. L., Mathematical Analysis and Numerical Methods for Science and Technology, vol. 6 (1993), Springer-Verlag: Springer-Verlag Berlin
[30] Bungartz, H.-J.; Griebel, M., Sparse grids, Acta Numer., 13, 123-147 (2004) · Zbl 1122.65405
[31] H. Nguyen, Finite element wavelets for solving partial differential equations, Ph.D. thesis, University of Utrecht, 2005.; H. Nguyen, Finite element wavelets for solving partial differential equations, Ph.D. thesis, University of Utrecht, 2005.
[32] Schmidlin, G.; Lage, Ch.; Schwab, Ch., Rapid solution of first kind boundary integral equations in \(R^3\), Eng. Anal. Bound. Elem., 27, 5, 469-490 (2003) · Zbl 1038.65129
[33] Nitsche, P.-A., Best \(N\)-term approximation spaces for tensor product wavelet bases, Constr. Approx., 24, 1, 49-70 (2006) · Zbl 1101.41021
[34] Schwab, Ch.; Stevenson, R., Adaptive wavelet algorithms for elliptic pdes on product domains, Math. Comp., 77, 71-92 (2008) · Zbl 1127.41009
[35] Cohen, A., Numerical Analysis of Wavelet Methods (2003), Elsevier Amsterdam: Elsevier Amsterdam Amsterdam · Zbl 1038.65151
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.