×

Optimal portfolio construction under partial information for a balanced fund. (English) Zbl 1141.91456

Summary: The model parameters in optimal asset allocation problems are often assumed to be deterministic. This is not a realistic assumption since most parameters are not known exactly and therefore have to be estimated. We consider investment opportunities which are modeled as local geometric Brownian motions whose drift terms may be stochastic and not necessarily measurable. The drift terms of the risky assets are assumed to be affine functions of some arbitrary factors. These factors themselves may be stochastic processes. They are modeled to have a mean-reverting behavior. We consider two types of factors, namely observable and unobservable ones. The closed-form solution of the general problem is derived. The investor is assumed to have either constant relative risk aversion (CRRA) or constant absolute risk aversion (CARA). The optimal asset allocation under partial information is derived by transforming the problem into a full-information problem, where the solution is well known. The analytical result is empirically tested in a real-world application. In our case, we consider the optimal management of a balanced fund mandate. The unobservable risk factors are estimated with a Kalman filter. We compare the results of the partial-information strategy with the corresponding full-information strategy. We find that using a partial-information approach yields much better results in terms of Sharpe ratios than the full-information approach.

MSC:

91G10 Portfolio theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.2469/faj.v59.n5.2562 · doi:10.2469/faj.v59.n5.2562
[2] Anderson B., Optimal Control: Linear Quadratic Methods (1990) · Zbl 0751.49013
[3] DOI: 10.1007/s002459900110 · Zbl 0984.91047 · doi:10.1007/s002459900110
[4] DOI: 10.1093/0198775180.001.0001 · doi:10.1093/0198775180.001.0001
[5] DOI: 10.1093/rfs/12.2.405 · doi:10.1093/rfs/12.2.405
[6] Brennan M. J., European Economic Review 1 pp 295–
[7] DOI: 10.1016/S0304-3932(01)00042-3 · doi:10.1016/S0304-3932(01)00042-3
[8] DOI: 10.1093/rfs/14.4.905 · doi:10.1093/rfs/14.4.905
[9] DOI: 10.1016/S0165-1889(97)00031-6 · Zbl 0901.90008 · doi:10.1016/S0165-1889(97)00031-6
[10] DOI: 10.1007/s007800050063 · Zbl 1047.91025 · doi:10.1007/s007800050063
[11] DOI: 10.1111/j.1540-6261.1992.tb03978.x · doi:10.1111/j.1540-6261.1992.tb03978.x
[12] DOI: 10.1088/1469-7688/3/1/303 · doi:10.1088/1469-7688/3/1/303
[13] Cvitani J., Review of Financial Studies
[14] DOI: 10.1111/j.1540-6261.1986.tb05043.x · doi:10.1111/j.1540-6261.1986.tb05043.x
[15] Dothan M. U., Journal of Finance 41 pp 383–
[16] DOI: 10.1016/0304-405X(93)90023-5 · Zbl 1131.91335 · doi:10.1016/0304-405X(93)90023-5
[17] DOI: 10.1111/j.1540-6261.1986.tb04538.x · doi:10.1111/j.1540-6261.1986.tb04538.x
[18] Hamilton J. D., Time Series Analysis (1994) · Zbl 0831.62061
[19] DOI: 10.1093/rfs/8.3.773 · doi:10.1093/rfs/8.3.773
[20] F. Herzog, Proceedings of the 11th Annual Meeting of the German Finance Association, Session 2B (Tübingen, Germany, 2004) pp. 1–34.
[21] DOI: 10.1111/j.1540-6261.1990.tb05110.x · doi:10.1111/j.1540-6261.1990.tb05110.x
[22] DOI: 10.1115/1.3662552 · doi:10.1115/1.3662552
[23] DOI: 10.1115/1.3658902 · doi:10.1115/1.3658902
[24] DOI: 10.1007/978-3-662-21901-0 · doi:10.1007/978-3-662-21901-0
[25] DOI: 10.1093/rfs/9.1.141 · doi:10.1093/rfs/9.1.141
[26] Kloeden P. E., Numerical Solution of Stochastic Differential Equations (1999)
[27] DOI: 10.1137/S0363012900377791 · Zbl 1020.93029 · doi:10.1137/S0363012900377791
[28] Lipster R. S., Statistics of Random Processes 1 (2001)
[29] Lipster R. S., Statistics of Random Processes 2 (2001)
[30] DOI: 10.2307/1926560 · doi:10.2307/1926560
[31] DOI: 10.1016/0022-0531(71)90038-X · Zbl 1011.91502 · doi:10.1016/0022-0531(71)90038-X
[32] DOI: 10.2307/1913811 · Zbl 0283.90003 · doi:10.2307/1913811
[33] Merton R. C., Continuous-Time Finance (1992) · Zbl 1019.91502
[34] DOI: 10.1111/0022-1082.00146 · doi:10.1111/0022-1082.00146
[35] DOI: 10.1016/j.jbankfin.2003.07.002 · doi:10.1016/j.jbankfin.2003.07.002
[36] Nagai H., Annals of Applied Probability 12 pp 173–
[37] DOI: 10.1007/PL00013532 · Zbl 0993.91017 · doi:10.1007/PL00013532
[38] DOI: 10.3905/jpm.1985.409007 · doi:10.3905/jpm.1985.409007
[39] DOI: 10.1016/S0167-6687(98)00006-7 · Zbl 0916.93085 · doi:10.1016/S0167-6687(98)00006-7
[40] DOI: 10.1007/978-0-387-21696-6_12 · doi:10.1007/978-0-387-21696-6_12
[41] Samuelson P. A., Review of Economics and Statistics 51 pp 68– · Zbl 1303.91134
[42] DOI: 10.1016/j.spa.2004.08.001 · Zbl 1114.91056 · doi:10.1016/j.spa.2004.08.001
[43] DOI: 10.1016/0304-405X(77)90016-2 · Zbl 1372.91113 · doi:10.1016/0304-405X(77)90016-2
[44] DOI: 10.2307/3594995 · doi:10.2307/3594995
[45] DOI: 10.1111/0022-1082.00323 · doi:10.1111/0022-1082.00323
[46] DOI: 10.1016/0024-3795(93)00292-8 · Zbl 0832.65042 · doi:10.1016/0024-3795(93)00292-8
[47] Yong J., Stochastic Controls, Hamiltonian Systems and HJB Equations (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.