×

Constructing and visualizing chemical reaction networks from pi-calculus models. (English) Zbl 1298.92128


MSC:

92E20 Classical flows, reactions, etc. in chemistry
68Q85 Models and methods for concurrent and distributed computing (process algebras, bisimulation, transition nets, etc.)

Software:

Nevada; BlenX; CGV; SpiCO
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bonchev, D.; Buck, GA; Bonchev, D. (ed.); Rouvray, DH (ed.), Quantitative measures of network complexity, 191-235 (2005), Berlin · doi:10.1007/0-387-25871-X_5
[2] Byrd D (1999) A scrollbar-based visualization for document navigation. In: DL’99: proceedings of the fourth ACM conference on Digital libraries, pp 122-129 · Zbl 1279.68270
[3] Cardelli L (2004) Brane calculi—interactions of biological membranes. In: Computational methods in systems biology, international conference, CMSB’04. LNCS, pp 257-278 · Zbl 1088.68657
[4] Cardelli, L., From processes to ODEs by chemistry, 261-281 (2008), Berlin
[5] Cardelli L (2008) On process rate semantics. Theor Comput Sci 391(3): 190-215 · Zbl 1133.68054 · doi:10.1016/j.tcs.2007.11.012
[6] Cardelli L, Caron E, Gardner P, Kahramanogullari O, Phillips A (2009) A process model of rho GTP-binding proteins. Theor Comput Sci 410(33-34): 3166-3185 · Zbl 1173.68040 · doi:10.1016/j.tcs.2009.04.029
[7] Dwyer T, Eades P (2002) Visualising a fund manager flow graph with columns and worms. In IV’02: proceedings of the 6th international conference on information visualisation, pp 147-152
[8] Diehl S, Görg C (2002) Graphs, they are changing—dynamic graph drawing for a sequence of graphs. In: GD’02: proceedings of the 10th international symposium on graph drawing, pp 23-31 · Zbl 1037.68577
[9] Dematté L, Priami C, Romanel A (2008) Modelling and simulation of biological processes in BlenX. Sigmetrics Perform Eval Rev 35(4):32-39, 2008. · Zbl 1160.68678
[10] Eick SG, Karr AF (2002) Visual scalability. J Comput Graph Stat 11(1): 22-43 · doi:10.1198/106186002317375604
[11] Faeder JR, Hlavacek WS, Reischl I, Blinov ML, Metzger H, Redondo A, Wofsy C, Goldstein B (2003) Investigation of early events in fcεri-mediated signaling using a detailed mathematical model. J Immunol 170(7): 3769-3781
[12] Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25): 2340-2361 · doi:10.1021/j100540a008
[13] Hlavacek WS, Faeder JR, Blinov ML, Perelson AS, Goldstein B (2003) The complexity of complexes in signal transduction. Biotechnol Bioeng 84(7): 783-794 · doi:10.1002/bit.10842
[14] John, M.; Lhoussaine, C.; Niehren, J.; Degano, P. (ed.); Gorrieri, R. (ed.), Dynamic compartments in the imperative pi-calculus, 235-250 (2009), Berlin
[15] John, M.; Lhoussaine, C.; Niehren, J.; Uhrmacher, AM, The attributed pi calculus, 83-102 (2008), Berlin
[16] John M, Lhoussaine C, Niehren J, Uhrmacher AM (2010) The attributed pi-calculus with priorities. In: Transactions on computaional systems biology XII. Special issue on modeling methodologies. LNCS (lecture notes in bioinformatics), vol 5945. Springer, Berlin, pp 13-76 · Zbl 1275.92023
[17] John M, Lhoussaine C, Niehren J, Versari C (2011) Biochemical reaction rules with constraints. In: Proceedings of the European symposium on programming, pp 338-357 · Zbl 1326.68050
[18] Kuttler C, Lhoussaine C, Niehren J (2007) A stochastic pi calculus for concurrent objects. In: Anai H, Horimoto K, Kutsia T (eds) Second international conference on algebraic biology. Lecture notes in computer science, vol 4545. pp 232-246 · Zbl 1126.92003
[19] Kuttler C (2006) Simulating bacterial transcription and translation in a stochastic pi-calculus. In: Transactions on computational systems biology 4220/2006:113-149 · Zbl 1069.68569
[20] Leye S, John M, Uhrmacher AM (2010) A flexible architecture for performance experiments with the pi-calculus and its extensions. In: Lawson B (ed) 3rd international ICST conference on simulation tools and techniques, ICST. ICST/IEEE, Malaga, spain
[21] Meyer, R.; Gorrieri, R.; Bravetti, M. (ed.); Zavattaro, G. (ed.), On the relationship between π-calculus and finite place/transition petri nets, 463-480 (2009), Berlin · Zbl 1254.68175
[22] Robin Milner. Communicating and Mobile Systems: the π-calculus. Cambridge University Press, 1999. · Zbl 0942.68002
[23] Mazemondet O, John M, Maus C, Uhrmacher AM, Rolfs A (2009) Integrating diverse reaction types into stochastic models—a signaling pathway case study in the imperative pi-calculus. In: Rossetti MD, Hill RR, Johansson B, Dunkin A, Ingalls RG (eds) Winter simulation conference, Institute of Electrical and Electronics Engineers, Inc., USA, pp 932-943
[24] Phillips A, Cardelli L (2007) Efficient, correct simulation of biological processes in the stochastic pi-calculus. In: Calder M, Gilmore S (eds) Computational methods in systems biology, international conference, CMSB’07. Lecture Notes in Computer Science, vol 4695. Springer, Berlin, pp 184-199
[25] Phillips A, Cardelli L, Castagna G (2006) A graphical representation for biological processes in the stochastic pi-calculus. Trans Comput Syst Biol 7: 123-152
[26] Phillips A (2009) Some 3D videos of SPiM simulations. http://research.microsoft.com/en-us/projects/spim/default.aspx. Accessed 05 OCT 2009.
[27] Priami C (1995) Stochastic π-calculus. In: Comput J 6: 578-589 · doi:10.1093/comjnl/38.7.578
[28] Priami C, Regev A, Shapiro EY, Silverman W (2001) Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Inf Process Lett 80(1): 25-31 · Zbl 0997.92018 · doi:10.1016/S0020-0190(01)00214-9
[29] Rao R, Card SK (1994) The table lens: merging graphical and symbolic representations in an interactive focus+context visualization for tabular information. In: ACM SIGCHI’94: proceedings of the ACM SIGCHI conference on human factors in computing systems, pp 111-117
[30] Regev A (2003) Computational systems biology: a calculus for biomolecular knowledge. PhD thesis, Tel Aviv University, Tel Aviv
[31] Regev A, Panina EM, Silverman W, Cardelli L, Shapiro E (2004) BioAmbients: an abstraction for biological compartments. Theor Comput Sci 325(1): 141-167 · Zbl 1069.68569 · doi:10.1016/j.tcs.2004.03.061
[32] Schulz H, John M, Unger A, Schumann H (2008) Visual analysis of bipartite biological networks. In: VCBM’08: proceedings of the eurographics workshop on visual computing for biomedicine, pp 135-142 · Zbl 0997.92018
[33] Tominski C, Abello J, Schumann H (2009) CGV—an interactive graph visualization system. Comput Graph 33(6): 660-678 · doi:10.1016/j.cag.2009.06.002
[34] Tymchyshyn O, Kwiatkowska MZ (2008) Combining intra- and inter-cellular dynamics to investigate intestinal homeostasis. In: Formal methods in systems biology. First international workshop, FMSB 2008, pp 63-76 · Zbl 1375.92015
[35] Versari C, Busi N (2008) Efficient stochastic simulation of biological systems with multiple variable volumes. Electron Notes Theor Comput Sci 194(3): 165-180 · Zbl 1279.68270 · doi:10.1016/j.entcs.2007.12.012
[36] Versari C (2007) A core calculus for a comparative analysis of bio-inspired calculi. In: European symposium on programming (ESOP’07), pp 411-425 · Zbl 1187.68331
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.