zbMATH — the first resource for mathematics

Methods for the visualization of clustered climate data. (English) Zbl 1077.62541
The authors discuss different visualization techniques for the results of clusterization. Meteorological data from Germany and Brazil are considered in the examples. OpenDX visualization software is used for the implementation. Rectangular View and modified Theme River plots, different spatial representations, interactively linked scatterplots and parallel coordinate views are described. Special attention is paid to the efficient cluster color coding.

62P12 Applications of statistics to environmental and related topics
86A10 Meteorology and atmospheric physics
62-09 Graphical methods in statistics (MSC2010)
OpenDX; ThemeRiver
Full Text: DOI
[1] Becker, R. A.; Cleveland, W. S., Brushing scatterplots, Technometrics, 29, 127-142, (1987)
[2] Böhm, U. (1999)Eine Methode zur Validierung von Klimamodellen fr die Klimawirkungsforschung hinsichtlich der Wiedergabe extremer Ereignisse (in german), Dissertation, Freie Universitt Berlin, Fachbereich Geowissenschaften.
[3] Bock, H. H. (1974)Automatische Klassifikation, Vandenhoeck & Ruprecht, Gttingen. · Zbl 0207.19202
[4] Brewer, C. A. (1999)Color Use Guidelines for Data Representation, Proceedings of the section on Statistical Graphics. American Statistical Association. Alexandria VA, pp. 55-60.
[5] Bergman, L. D., Rogowitz, B. E. & Treinish, L. A. (1995)A Rule-based Tool for Assisting Colormap Selection, Visualization ’95 (Atlanta), IEEE Computer Society Press, pp. 118-125, 444.
[6] Cleveland, W. S. (1993)Visualizing Data, Resource Publications in Geography, Hobart Press.
[7] Forgy, E. W. (1965)Cluster Analysis of Multivariate Data: Efficiency versus Interpretability of classifications (abstract), In: Biometrics21, 768.
[8] Gerstengarbe, F.-W. & Werner, P. C. (1994)Klimatologische Untersuchungen des Sommers 1992 in Deutschland (in german), PIK-Report, no. 2, 125-174.
[9] Gerstengarbe, F.-W. & Werner, P. C. (1999)The complete non-hierarchical cluster analysis, PIK-Report, no. 50, 768.
[10] Gerstengarbe, F.-W.; Werner, P. C.; Fraedrich, K., Applying non-hierarchical cluster analysis algorithms to climate classification: some problems and their solution, Intern. J. of Climatology, 64, 143-150, (1999)
[11] Havre, S., Hetzler, E., Whitney, P. & Nowell, L. (2002)Themeriver: Visualizing thematic changes in large document collections, ACM Transactions on Graphics8, no. 1.
[12] Han, J. & Kamber, M. (2000)Data Mining: Concepts and Techniques, 8 ed., The Morgan Kaufmann Series in Data Management Systems, Jim Gray, Series Editor Morgan Kaufmann Publishers.
[13] Keim, D., Müller, W. & Schumann, H. (2002)Information Visualization and Visual Data Mining; State of the art report, Proceedings Eurographics 2002, Saarbrcken, Sept.
[14] Kreuseler, M.; Nocke, T.; Schumann, H.; Opitz, O. (ed.); Schwaiger, M. (ed.), Integration of Clustering and Visualization Techniques for Visual Data Analysis, 119-132, (2003), Berlin/Heidelberg-Berlin
[15] Kalvin, A. D., Pelah, A., Cohen, A. & Rogowitz, B. E. (2000)Building Perceptual Color Maps for Visualizing Interval data, Proceedings SPIE Conference on Human Vision and Electronic Imaging, San Jose, CA.
[16] Kindlmann, G., Reingard, E. & Creem, S. (2002)Face-based Luminance Matching for Perceptual Colormap Generation, Proc. IEEE Information Visualization 2002, IEEE Press.
[17] MacEachren, A. M. (1994)Some Truth With Maps: A Primer on Symbolization and Design, Resource Publications in Geography, Association of American Geographers.
[18] Spence, R. (2001)Information visualization, Addison-Wesley, Harlow.
[19] Tominski, C., Schulze-Wollgast, P. & Schumann, H. (2003)Visualisierung zeitlicher Verlufe auf geografischen Karten, Proceedings GeoVis’03, Hannover, Febr.
[20] Unwin, A., Wills, G. & Haslett, J. (1990)REGARD—Graphical Analysis of Regional Data, ‘1990 Proceedings of the Section on Statistical Graphics’, American Statistical Association, pp. 36-41.
[21] van Wijk, J. J. & van Selow, E. R. (1999)Cluster and calendar based visualization of time series data, IEEE Symposium on Information Visualization ’99, pp. 4-9.
[22] Weber, M., Alexa, M. & Müller, W. (2001)Visualizing time-series on spirals, IEEE Symposium on Information Visualization ’01, October, ISBN 0-7695-1342-5, pp. 21-28.
[23] Westphal, C. & Blaxton, T. (1998)Data Mining Solutions—Methods and Tools for Solving Real-World Problems, 8 ed., John Wiley & Sons, Inc., New York.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.