×

Inferring intracellular signal transduction circuitry from molecular perturbation experiments. (English) Zbl 1394.92034

Summary: The development of network inference methodologies that accurately predict connectivity in dysregulated pathways may enable the rational selection of patient therapies. Accurately inferring an intracellular network from data remains a very challenging problem in molecular systems biology. Living cells integrate extremely robust circuits that exhibit significant heterogeneity, but still respond to external stimuli in predictable ways. This phenomenon allows us to introduce a network inference methodology that integrates measurements of protein activation from perturbation experiments. The methodology relies on logic-based networks to provide a predictive approximation of the transfer of signals in a network. The approach presented was validated in silico with a set of test networks and applied to investigate the epidermal growth factor receptor signaling of a breast epithelial cell line, MFC10A. In our analysis, we predict the potential signaling circuitry most likely responsible for the experimental readouts of several proteins in the mitogen-activated protein kinase and phosphatidylinositol-3 kinase pathways. The approach can also be used to identify additional necessary perturbation experiments to distinguish between a set of possible candidate networks.

MSC:

92C37 Cell biology
92C40 Biochemistry, molecular biology
92C42 Systems biology, networks

Software:

booleannet; REVEAL
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Akman, OE; Watterson, S; Parton, A; Binns, N; Millar, AJ; Ghazal, P, Digital clocks: simple Boolean models can quantitatively describe Circadian systems, J R Soc Interface, 9, 2365-2382, (2012) · doi:10.1098/rsif.2012.0080
[2] Akutsu, T; Miyano, S; Kuhara, S, Identification of genetic networks from a small number of gene expression patterns under the Boolean network model, Pac Symp Biocomput, 4, 17-28, (1999) · doi:10.1142/9789814447300_0003
[3] Albert, I; Thakar, J; Li, S; Zhang, R; Albert, R, No article title, Boolean network simulations for life scientists. Source Code Biol Med, 3, 16, (2008) · doi:10.1186/1751-0473-3-16
[4] Albert, R; Othmer, HG, The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in drosophila melanogaster, J Theor Biol, 223, 1-18, (2003) · Zbl 1464.92108 · doi:10.1016/S0022-5193(03)00035-3
[5] Arkin, A; Ross, J, Computational functions in biochemical reaction networks, Biophys J, 67, 560-578, (1994) · doi:10.1016/S0006-3495(94)80516-8
[6] Bernal-Mizrachi, E; Kulkarni, RN; Scott, DK; Mauvais-Jarvis, F; Stewart, AF; Garcia-Ocaña, A, Human \(β \)-cell proliferation and intracellular signaling part 2: still driving in the dark without a road map, Diabetes, 63, 819-831, (2014) · doi:10.2337/db13-1146
[7] Brummer, T; Naegele, H; Reth, M; Misawa, Y, Identification of novel ERK-mediated feedback phosphorylation sites at the C-terminus of B-raf, Oncogene, 22, 8823-8834, (2003) · doi:10.1038/sj.onc.1207185
[8] Chaves, M; Albert, R; Sontag, ED, Robustness and fragility of Boolean models for genetic regulatory networks, J Theor Biol, 235, 431-449, (2005) · Zbl 1445.92173 · doi:10.1016/j.jtbi.2005.01.023
[9] Crampin, EJ; Schnell, S; McSharry, PE, Mathematical and computational techniques to deduce complex biochemical reaction mechanisms, Prog Biophys Mol Biol, 86, 77-112, (2004) · doi:10.1016/j.pbiomolbio.2004.04.002
[10] Davidich, MI; Bornholdt, S, Boolean network model predicts cell cycle sequence of fission yeast, PLoS ONE, 3, e1672, (2008) · doi:10.1371/journal.pone.0001672
[11] Deb, K, No article title, An introduction to genetic algorithms. Sadhana, 24, 293-315, (1999) · Zbl 1075.90565 · doi:10.1007/BF02823145
[12] Du, J; etal., Bead-based profiling of tyrosine kinase phosphorylation identifies SRC as a potential target for glioblastoma therapy, Nat Biotechnol, 27, 77-83, (2009) · doi:10.1038/nbt.1513
[13] Foster, KG; Fingar, DC, Mammalian target of rapamycin (mtor): conducting the cellular signaling symphony, J Biol Chem, 285, 14071-14077, (2010) · doi:10.1074/jbc.R109.094003
[14] Garg, A; Cara, A; Xenarios, I; Mendoza, L; Micheli, G, Synchronous versus asynchronous modeling of gene regulatory networks, Bioinformatics, 24, 1917-1925, (2008) · doi:10.1093/bioinformatics/btn336
[15] Glass, L; Kauffman, SA, The logical analysis of continuous, non-linear biochemical control networks, J Theor Biol, 39, 103-129, (1973) · doi:10.1016/0022-5193(73)90208-7
[16] Hahn-Windgassen, A; Nogueira, V; Chen, C-C; Skeen, JE; Sonenberg, N; Hay, N, Akt activates the Mammalian target of rapamycin by regulating cellular ATP level and AMPK activity, J Biol Chem, 280, 32081-32089, (2005) · doi:10.1074/jbc.M502876200
[17] Halilovic, E; She, Q-B; Ye, Q; Pagliarini, R; Sellers, WR; Solit, DB; Rosen, N, PIK3CA mutation uncouples tumor growth and cyclin D1 regulation from MEK/ERK and mutant KRAS signaling, Cancer Res, 70, 6804-6814, (2010) · doi:10.1158/0008-5472.CAN-10-0409
[18] Hay, N, The akt-mtor tango and its relevance to cancer, Cancer Cell, 8, 179-183, (2005) · doi:10.1016/j.ccr.2005.08.008
[19] Hjelmfelt, A; Ross, J, Implementation of logic functions and computations by chemical kinetics, Physica D, 84, 180-193, (1995) · doi:10.1016/0167-2789(95)00014-U
[20] Hjelmfelt, A; Schneider, FW; Ross, J, Pattern recognition in coupled chemical kinetic systems, Science, 260, 335-337, (1993) · doi:10.1126/science.260.5106.335
[21] Hong, CC; Kume, T; Peterson, RT, Role of crosstalk between phosphatidylinositol 3-kinase and extracellular signal-regulated kinase/mitogen-activated protein kinase pathways in artery-vein specification, Circ Res, 103, 573-579, (2008) · doi:10.1161/CIRCRESAHA.108.180745
[22] Jiang, B-H; Liu, L-Z, Role of mtor in anticancer drug resistance: perspectives for improved drug treatment, Drug Resist Updat, 11, 63-76, (2008) · doi:10.1016/j.drup.2008.03.001
[23] Kholodenko, BN; Kiyatkin, A; Bruggeman, FJ; Sontag, E; Westerhoff, HV; Hoek, JB, Untangling the wires: a strategy to trace functional interactions in signaling and gene networks, Proc Natl Acad Sci USA, 99, 12841-12846, (2002) · doi:10.1073/pnas.192442699
[24] Krishhan, VV; Khan, IH; Luciw, PA, Multiplexed microbead immunoassays by flow cytometry for molecular profiling: basic concepts and proteomics applications, Crit Rev Biotechnol, 29, 29-43, (2009) · doi:10.1080/07388550802688847
[25] Kulkarni, RN; Mizrachi, EB; Ocana, AG; Stewart, AF, Human \(β \)-cell proliferation and intracellular signaling: driving in the dark without a road map, Diabetes, 61, 2205-2213, (2012) · doi:10.2337/db12-0018
[26] Lahav, G; Rosenfeld, N; Sigal, A; Geva-Zatorsky, N; Levine, AJ; Elowitz, MB; Alon, U, Dynamics of the p53-mdm2 feedback loop in individual cells, Nat Genet, 36, 147-150, (2004) · doi:10.1038/ng1293
[27] Leyton, J; etal., Noninvasive imaging of cell proliferation following mitogenic extracellular kinase inhibition by PD0325901, Mol Cancer Ther, 7, 3112-3121, (2008) · doi:10.1158/1535-7163.MCT-08-0264
[28] Li, F; Long, T; Lu, Y; Ouyang, Q; Tang, C, The yeast cell-cycle network is robustly designed, Proc Natl Acad Sci USA, 101, 4781-4786, (2004) · doi:10.1073/pnas.0305937101
[29] Li, S; Assmann, SM; Albert, R, Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling, PLoS Biol, 4, e312, (2006) · doi:10.1371/journal.pbio.0040312
[30] Liang, S; Fuhrman, S; Somogyi, R, Reveal, a general reverse engineering algorithm for inference of genetic network architectures, Pac Symp Biocomput, 3, 18-29, (1998)
[31] Liu, X; Shah, A; Gangwani, MR; Silverstein, PS; Fu, M; Kumar, A, HIV-1 nef induces CCL5 production in astrocytes through p38-MAPK and PI3K/akt pathway and utilizes NF-kb, CEBP and AP-1 transcription factors, Sci Rep, 4, 4450, (2014) · doi:10.1038/srep04450
[32] Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC (2002) Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/Akt pathway. Mol Cell 10:151-162. doi:10.1016/S1097-2765(02)00568-3
[33] McCormick, F, Mutant onco-proteins as drug targets: successes, failures, and future prospects, Curr Opin Genet Dev, 21, 29-33, (2011) · doi:10.1016/j.gde.2010.12.002
[34] McCubrey, JA; etal., Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance, Adv Enzyme Regul, 46, 249-279, (2006) · doi:10.1016/j.advenzreg.2006.01.004
[35] Meier, F; etal., The RAS/RAF/MEK/ERK and PI3K/AKT signaling pathways present molecular targets for the effective treatment of advanced melanoma, Front Biosci, 10, 2986-3001, (2005) · doi:10.2741/1755
[36] Mitchell M (1996) An introduction to genetic algorithms: complex adaptive systems. MIT Press, Cambridge
[37] Mourão, MA; Srividhya, J; McSharry, PE; Crampin, EJ; Schnell, S, A graphical user interface for a method to infer kinetics and network architecture (MIKANA), PLoS ONE, 6, e27534, (2011) · doi:10.1371/journal.pone.0027534
[38] Nakayama, K; Satoh, T; Igari, A; Kageyama, R; Nishida, E, FGF induces oscillations of hes1 expression and ras/ERK activation, Curr Biol, 18, r332-334, (2008) · doi:10.1016/j.cub.2008.03.013
[39] Nie, S; Chang, C, PI3K and erk MAPK mediate erbb signaling in xenopus gastrulation, Mech Dev, 124, 657-667, (2007) · doi:10.1016/j.mod.2007.07.005
[40] Plas, DR; Thompson, CB, Akt-dependent transformation: there is more to growth than just surviving, Oncogene, 24, 7435-7442, (2005) · doi:10.1038/sj.onc.1209097
[41] Qiang, Y-W; Yao, L; Tosato, G; Rudikoff, S, Insulin-like growth factor I induces migration and invasion of human multiple myeloma cells, Blood, 103, 301-308, (2004) · doi:10.1182/blood-2003-06-2066
[42] Ribba, B; Colin, T; Schnell, S, A multiscale mathematical model of cancer, and its use in analyzing irradiation therapies, Theor Biol Med Model, 3, 7, (2006) · doi:10.1186/1742-4682-3-7
[43] Ritt, DA; Monson, DM; Specht, SI; Morrison, DK, Impact of feedback phosphorylation and raf heterodimerization on normal and mutant B-raf signaling, Mol Cell Biol, 30, 806-819, (2010) · doi:10.1128/MCB.00569-09
[44] Robey RB, Hay N (2009) Is Akt the “Warburg kinase”?-Akt-energy metabolism interactions and oncogenesis. Semin Cancer Biol 19:25-31. doi:10.1016/j.semcancer.2008.11.010
[45] Rommel, C; etal., Differentiation stage-specific inhibition of the raf-MEK-ERK pathway by akt, Science, 286, 1738-1741, (1999) · doi:10.1126/science.286.5445.1738
[46] Sabatini, DM, Mtor and cancer: insights into a complex relationship, Nat Rev Cancer, 6, 729-734, (2006) · doi:10.1038/nrc1974
[47] Saeed, M; Ijaz, M; Javed, K; Babri, HA, Reverse engineering Boolean networks: from Bernoulli mixture models to rule based systems, PLoS ONE, 7, e51006, (2012) · doi:10.1371/journal.pone.0051006
[48] Saez-Rodriguez, J; Alexopoulos, LG; Epperlein, J; Samaga, R; Lauffenburger, DA; Klamt, S; Sorger, PK, Discrete logic modelling as a means to link protein signalling networks with functional analysis of Mammalian signal transduction, Mol Syst Biol, 5, 331, (2009) · doi:10.1038/msb.2009.87
[49] Samaga, R; Saez-Rodriguez, J; Alexopoulos, LG; Sorger, PK; Klamt, S, The logic of EGFR/erbb signaling: theoretical properties and analysis of high-throughput data, PLoS Comput Biol, 5, e1000438, (2009) · doi:10.1371/journal.pcbi.1000438
[50] Sarbassov, DD; etal., Prolonged rapamycin treatment inhibits mtorc2 assembly and akt/PKB, Mol Cell, 22, 159-168, (2006) · doi:10.1016/j.molcel.2006.03.029
[51] Sarbassov, DD; Guertin, DA; Ali, SM; Sabatini, DM, Phosphorylation and regulation of akt/PKB by the rictor-mtor complex, Science, 307, 1098-1101, (2005) · doi:10.1126/science.1106148
[52] Schultze, SM; Hemmings, BA; Niessen, M; Tschopp, O, PI3K/AKT, MAPK and AMPK signalling: protein kinases in glucose homeostasis, Expert Rev Mol Med, 14, e1, (2012) · doi:10.1017/S1462399411002109
[53] Serra, V; etal., PI3K inhibition results in enhanced HER signaling and acquired ERK dependency in HER2-overexpressing breast cancer, Oncogene, 30, 2547-2557, (2011) · doi:10.1038/onc.2010.626
[54] Shankaran, H; Ippolito, DL; Chrisler, WB; Resat, H; Bollinger, N; Opresko, LK; Wiley, HS, Rapid and sustained nuclear-cytoplasmic ERK oscillations induced by epidermal growth factor, Mol Syst Biol, 5, 332, (2009) · doi:10.1038/msb.2009.90
[55] Srividhya, J; Crampin, EJ; McSharry, PE; Schnell, S, Reconstructing biochemical pathways from time course data, Proteomics, 7, 828-838, (2007) · doi:10.1002/pmic.200600428
[56] Stelniec-Klotz, I; etal., Reverse engineering a hierarchical regulatory network downstream of oncogenic KRAS, Mol Syst Biol, 8, 601, (2012) · doi:10.1038/msb.2012.32
[57] Tamsir, A; Tabor, JJ; Voigt, CA, Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’, Nature, 469, 212-215, (2011) · doi:10.1038/nature09565
[58] Thomas, R, Boolean formalization of genetic control circuits, J Theor Biol, 42, 563-585, (1973) · doi:10.1016/0022-5193(73)90247-6
[59] Thomas, R, No article title, Circular causality. Syst Biol (Stevenage), 153, 140-153, (2006) · doi:10.1049/ip-syb:20050101
[60] Thomas R, D’Ari R (1990) Biological feedback. CRC Press, Boca Raton · Zbl 0743.92003
[61] Golen, KL; Bao, LW; Pan, Q; Miller, FR; Wu, ZF; Merajver, SD, Mitogen activated protein kinase pathway is involved in rhoc gtpase induced motility, invasion and angiogenesis in inflammatory breast cancer, Clin Exp Metastasis, 19, 301-311, (2002) · doi:10.1023/A:1015518114931
[62] Vidal, M; Cusick, ME; Barabási, AL, Interactome networks and human disease, Cell, 144, 986-998, (2011) · doi:10.1016/j.cell.2011.02.016
[63] Wang, YK; Hurley, DG; Schnell, S; Print, CG; Crampin, EJ, Integration of steady-state and temporal gene expression data for the inference of gene regulatory networks, PLoS ONE, 8, e72103, (2013) · doi:10.1371/journal.pone.0072103
[64] Won, J-K; Yang, HW; Shin, S-Y; Lee, JH; Heo, WD; Cho, K-H, The crossregulation between ERK and PI3K signaling pathways determines the tumoricidal efficacy of MEK inhibitor, J Mol Cell Biol, 4, 153-163, (2012) · doi:10.1093/jmcb/mjs021
[65] Wynn, ML; Consul, N; Merajver, SD; Schnell, S, Logic-based models in systems biology: a predictive and parameter-free network analysis method, Integr Biol (Camb), 4, 1323-1337, (2012) · doi:10.1039/c2ib20193c
[66] Wynn ML, Consul N, Merajver SD, Schnell S (2014) Inferring the effects of Honokiol on the Notch signaling pathway in SW480 colon cancer cells. Cancer Inform (Suppl. 5):1-12. doi:10.4137/cin.s14060
[67] Zhang G, He B, Weber GF (2003) Growth factor signaling induces metastasis genes in transformed cells: molecular connection between Akt kinase and osteopontin in breast cancer. Mol Cell Biol 23:6507-6519. doi:10.1128/MCB.23.18.6507-6519.200
[68] Zhang, R; etal., Network model of survival signaling in large granular lymphocyte leukemia, Proc Natl Acad Sci USA, 105, 16308-16313, (2008) · doi:10.1073/pnas.0806447105
[69] Zimmermann, S; Moelling, K, Phosphorylation and regulation of raf by akt (protein kinase B), Science, 286, 1741-1744, (1999) · doi:10.1126/science.286.5445.1741
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.