×

zbMATH — the first resource for mathematics

How does flow in a pipe become turbulent? (English) Zbl 1189.76255
Summary: The transition to turbulence in pipe flow does not follow the scenario familiar from Rayleigh-Benard or Taylor-Couette flow since the laminar profile is stable against infinitesimal perturbations for all Reynolds numbers. Moreover, even when the flow speed is high enough and the perturbation sufficiently strong such that turbulent flow is established, it can return to the laminar state without any indication of the imminent decay. In this parameter range, the lifetimes of perturbations show a sensitive dependence on initial conditions and an exponential distribution. The turbulence seems to be supported by threedimensional travelling waves which appear transiently in the flow field. The boundary between laminar and turbulent dynamics is formed by the stable manifold of an invariant chaotic state. We also discuss the relation between observations in short, periodically continued domains, and the dynamics in fully extended puffs.

MSC:
76F06 Transition to turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] E.L. Koschmieder, BĂ©nard Cells and Taylor Vortices (University Press, Cambridge, 1993)
[2] L. Boberg, U. Brosa, Z. Naturforsch. 43, 697 (1988)
[3] S. Grossmann, Rev. Mod. Phys. 72, 603 (2000) · doi:10.1103/RevModPhys.72.603
[4] R.R. Kerswell, Nonlinearity 18, R17 (2005) · Zbl 1084.76033 · doi:10.1088/0951-7715/18/6/R01
[5] B. Eckhardt, T.M. Schneider, B. Hof, J. Westerweel, Ann. Rev. Fluid Mech. 39, 447 (2007) · doi:10.1146/annurev.fluid.39.050905.110308
[6] B. Eckhardt, H. Faisst, A. Schmiegel, J. Schumacher, Advances in Turbulence IX, edited by I.P. Castro, P.E. Hanock, T.G. Thomas (Barcelona, 2002), pp. 701–708
[7] B. Eckhardt, H. Faisst, A. Schmiegel, T.M. Schneider, Phil. Trans. Roy. Soc. (London) 366, 1297 (2008) · doi:10.1098/rsta.2007.2132
[8] T. Mullin, R. Kerswell, Laminar-turbulent transition and finite amplitude solutions, edited by T. Mullin, R. Kerswell (Springer, Dordrecht, 2004)
[9] B. Eckhardt, Nonlinearity 21, T1 (2008) · Zbl 1139.76024 · doi:10.1088/0951-7715/21/1/T01
[10] O. Reynolds, Phil. Trans. Roy. Soc. (London) 174, 935 (1883) · JFM 16.0845.02 · doi:10.1098/rstl.1883.0029
[11] O. Reynolds, Proc. Roy. Soc. (London) 35, 84 (1883) · doi:10.1098/rspl.1883.0018
[12] L. Prandtl, O.G. Tietjens, Applied Hydro-and Aeromechanics (Dover Publications, New York, 1934) · Zbl 0078.39604
[13] A.G. Darbyshire, T. Mullin, J. Fluid Mech. 289, 83 (1995) · doi:10.1017/S0022112095001248
[14] I.J. Wygnanski, F.H. Champagne, J. Fluid Mech. 59, 281 (1973) · doi:10.1017/S0022112073001576
[15] I.J. Wygnanski, M. Sokolov, D. Friedman, J. Fluid Mech. 69, 283 (1975) · doi:10.1017/S0022112075001449
[16] M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993) · Zbl 1371.37001 · doi:10.1103/RevModPhys.65.851
[17] J. Schumacher, B. Eckhardt, Phys. Rev. E 63, 046307 (2001) · doi:10.1103/PhysRevE.63.046307
[18] A. Prigent, G. Gregoire, H. Chate, O. Dauchot, W. van Saarloos, Phys. Rev. Lett. 89, 014501 (2002) · doi:10.1103/PhysRevLett.89.014501
[19] D. Barkley, L.S. Tuckerman, Phys. Rev. Lett. 94, 014502 (2005) · doi:10.1103/PhysRevLett.94.014502
[20] T. Mullin, J. Peixinho, J. Low Temp. Phys. 145, 75 (2006) · doi:10.1007/s10909-006-9242-4
[21] J. Peixinho, T. Mullin, Phys. Rev. Lett. 96, 094501 (2006) · doi:10.1103/PhysRevLett.96.094501
[22] J. Peixinho, T. Mullin, J. Fluid Mech. 582, 169 (2007) · Zbl 1114.76304 · doi:10.1017/S0022112007006398
[23] B. Hof, In Laminar-turbulent transition and finite amplitude solutions (Springer, 2004), pp. 221–231
[24] A.P. Willis, R.R. Kerswell, arXiv: 0706.3330:4 pages, 2007
[25] T.M. Schneider, B. Eckhardt, J. Vollmer, Phys. Rev. E 75, 066313 (2007) · doi:10.1103/PhysRevE.75.066313
[26] C.W.H. van Doorne, Stereoscopiv PIV on transition in pipe flow, Ph.D. thesis, TU Delft, 2004
[27] H. Faisst, B. Eckhardt, Phys. Rev. Lett. 91, 224502 (2003) · doi:10.1103/PhysRevLett.91.224502
[28] E. Ott, Chaos in Dynamical Systems (University Press, Cambridge, 1993) · Zbl 0792.58014
[29] H. Faisst, B. Eckhardt, Phys. Rev. E 61, 7227 (2000) · doi:10.1103/PhysRevE.61.7227
[30] H. Wedin, R.R. Kerswell, J. Fluid Mech. 508, 333 (2004) · Zbl 1065.76072 · doi:10.1017/S0022112004009346
[31] C. Pringle, R.R. Kerswell, Phys. Rev. Lett. 99, 074502 (2007) · doi:10.1103/PhysRevLett.99.074502
[32] B. Hof, C.W.H. van Doorne, J. Westerveel, F.T.M. Nieuwstadt, H. Faisst, B. Eckhardt, H. Wedin, R.R. Kerswell, F. Waleffe, Science 305, 1594 (2004) · doi:10.1126/science.1100393
[33] A. Meseguer, L.N. Trefethen, J. Comp. Phys. 186, 178 (2003) · Zbl 1047.76565 · doi:10.1016/S0021-9991(03)00029-9
[34] U. Brosa, J. Stat. Phys. 55, 1303 (1989) · doi:10.1007/BF01041090
[35] H. Faisst, B. Eckhardt, J. Fluid Mech. 504, 343 (2004) · Zbl 1116.76362 · doi:10.1017/S0022112004008134
[36] B. Hof, J. Westerweel, T.M. Schneider, B. Eckhardt, Nature 443, 60 (2006) · doi:10.1038/nature05089
[37] T.M. Schneider, B. Eckhardt, J.A. Yorke, Phys. Rev. Lett. 99, 034502 (2007) · doi:10.1103/PhysRevLett.99.034502
[38] A.P. Willis, R.R. Kerswell, Phys. Rev. Lett. 98, 014501 (2007) · doi:10.1103/PhysRevLett.98.014501
[39] B. Hof, J. Westerweel, T.M. Schneider, B. Eckhardt, arXiv:0707.2642v1 [physics.flu-dyn], 2007
[40] G. Ben-Dov, J. Cohen, Phys. Rev. Lett. 98, 064503 (2007) · doi:10.1103/PhysRevLett.98.064503
[41] J.D. Skufca, J.A. Yorke, B. Eckhardt, Phys. Rev. Lett. 96, 174101 (2006) · doi:10.1103/PhysRevLett.96.174101
[42] T.M. Schneider, B. Eckhardt, Chaos 16, 020604 (2006) · Zbl 05359818 · doi:10.1063/1.2390553
[43] J. Vollmer, T.M. Schneider, B. Eckhardt, in preparation (2008)
[44] A. Schmiegel, B. Eckhardt, Phys. Rev. Lett. 79, 5250 (1997) · doi:10.1103/PhysRevLett.79.5250
[45] J. Moehlis, H. Faisst, B. Eckhardt, New J. Phys. 6, n. 56 (2004)
[46] F. Mellibovsky, A. Meseguer, Phys. Fluids 18, 074104 (2006); F. Mellibovsky, A. Meseguer, Phys. Fluids 19, 044102 (2007) · doi:10.1063/1.2222376
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.