×

zbMATH — the first resource for mathematics

Edge states for the turbulence transition in the asymptotic suction boundary layer. (English) Zbl 1287.76122
Summary: We demonstrate the existence of an exact invariant solution to the Navier-Stokes equations for the asymptotic suction boundary layer. The identified periodic orbit with a very long period of several thousand advective time units is found as a local dynamical attractor embedded in the stability boundary between laminar and turbulent dynamics. Its dynamics captures both the interplay of downstream-oriented vortex pairs and streaks observed in numerous shear flows as well as the energetic bursting that is characteristic for boundary layers. By embedding the flow into a family of flows that interpolates between plane Couette flow and the boundary layer, we demonstrate that the periodic orbit emerges in a saddle-node infinite-period (SNIPER) bifurcation of two symmetry-related travelling-wave solutions of plane Couette flow. Physically, the long period is due to a slow streak instability, which leads to a violent breakup of a streak associated with the bursting and the reformation of the streak at a different spanwise location. We show that the orbit is structurally stable when varying both the Reynolds number and the domain size.

MSC:
76F06 Transition to turbulence
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112010000297 · Zbl 1189.76254 · doi:10.1017/S0022112010000297
[2] DOI: 10.1103/PhysRevLett.108.044501 · doi:10.1103/PhysRevLett.108.044501
[3] DOI: 10.1063/1.3265962 · Zbl 1183.76187 · doi:10.1063/1.3265962
[4] DOI: 10.1017/S0022112009990863 · Zbl 1183.76688 · doi:10.1017/S0022112009990863
[5] DOI: 10.1017/S0022112003003768 · Zbl 1034.76014 · doi:10.1017/S0022112003003768
[6] DOI: 10.1017/S0022112097005818 · Zbl 0898.76028 · doi:10.1017/S0022112097005818
[7] J. Fluid Mech. 611 pp 107– (2008)
[8] Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry and Engineering (1994)
[9] DOI: 10.1063/1.3589842 · Zbl 06422370 · doi:10.1063/1.3589842
[10] DOI: 10.1103/PhysRevLett.96.174101 · doi:10.1103/PhysRevLett.96.174101
[11] DOI: 10.1017/S0022112088001818 · Zbl 0643.76066 · doi:10.1017/S0022112088001818
[12] DOI: 10.1017/S0022112009993144 · Zbl 1189.76258 · doi:10.1017/S0022112009993144
[13] DOI: 10.1016/0167-2789(88)90032-2 · Zbl 0634.34027 · doi:10.1016/0167-2789(88)90032-2
[14] DOI: 10.1103/PhysRevLett.91.224502 · doi:10.1103/PhysRevLett.91.224502
[15] DOI: 10.1103/PhysRevE.78.037301 · doi:10.1103/PhysRevE.78.037301
[16] DOI: 10.1017/S0022112000002421 · Zbl 0983.76025 · doi:10.1017/S0022112000002421
[17] DOI: 10.1103/PhysRevE.61.7227 · doi:10.1103/PhysRevE.61.7227
[18] DOI: 10.1103/PhysRevLett.99.034502 · doi:10.1103/PhysRevLett.99.034502
[19] Phys. Rev. Lett. 94 pp 10– (2005)
[20] DOI: 10.1146/annurev.fluid.39.050905.110308 · doi:10.1146/annurev.fluid.39.050905.110308
[21] DOI: 10.1103/PhysRevE.75.066313 · doi:10.1103/PhysRevE.75.066313
[22] DOI: 10.1098/rsta.2007.2132 · doi:10.1098/rsta.2007.2132
[23] DOI: 10.1098/rsta.2008.0216 · Zbl 1221.76097 · doi:10.1098/rsta.2008.0216
[24] J. Fluid Mech. 613 pp 255– (2008)
[25] DOI: 10.1103/PhysRevLett.79.5250 · doi:10.1103/PhysRevLett.79.5250
[26] Boundary-Layer Theory (2004)
[27] DOI: 10.1146/annurev.fl.23.010191.003125 · doi:10.1146/annurev.fl.23.010191.003125
[28] DOI: 10.1103/PhysRevE.55.2023 · doi:10.1103/PhysRevE.55.2023
[29] DOI: 10.1017/S0022112090000829 · doi:10.1017/S0022112090000829
[30] DOI: 10.1063/1.1821751 · doi:10.1063/1.1821751
[31] Phys. Rev. Lett. 103 pp 1– (2009)
[32] DOI: 10.1063/1.2136900 · Zbl 1188.76078 · doi:10.1063/1.2136900
[33] DOI: 10.1063/1.4757227 · Zbl 06478030 · doi:10.1063/1.4757227
[34] DOI: 10.1017/S0022112067001740 · doi:10.1017/S0022112067001740
[35] DOI: 10.1017/jfm.2013.20 · Zbl 1284.76106 · doi:10.1017/jfm.2013.20
[36] DOI: 10.1146/annurev-fluid-120710-101228 · Zbl 1352.76031 · doi:10.1146/annurev-fluid-120710-101228
[37] DOI: 10.1017/S0022112001006243 · Zbl 0996.76034 · doi:10.1017/S0022112001006243
[38] DOI: 10.1146/annurev.fluid.30.1.1 · doi:10.1146/annurev.fluid.30.1.1
[39] J. Fluid Mech. 332 pp 185– (1997) · Zbl 0892.76036 · doi:10.1017/S0022112096003965
[40] DOI: 10.1017/jfm.2013.75 · Zbl 1287.76155 · doi:10.1017/jfm.2013.75
[41] DOI: 10.1017/S0022112095000462 · Zbl 0847.76007 · doi:10.1017/S0022112095000462
[42] DOI: 10.1017/S0022112004009346 · Zbl 1065.76072 · doi:10.1017/S0022112004009346
[43] DOI: 10.1126/science.1100393 · doi:10.1126/science.1100393
[44] Phys. Rev. Lett. 98 pp 6– (2007)
[45] DOI: 10.1093/qjmam/28.3.341 · Zbl 0321.76021 · doi:10.1093/qjmam/28.3.341
[46] DOI: 10.1063/1.869185 · doi:10.1063/1.869185
[47] DOI: 10.1017/S0022112095000978 · Zbl 0867.76032 · doi:10.1017/S0022112095000978
[48] Stud. Appl. Maths 95 pp 319– (1995) · Zbl 0838.76026 · doi:10.1002/sapm1995953319
[49] DOI: 10.1017/S0022112008005065 · Zbl 1171.76383 · doi:10.1017/S0022112008005065
[50] New J. Phys. 11 pp 1– (2009)
[51] DOI: 10.1017/S0022112007005459 · Zbl 1175.76074 · doi:10.1017/S0022112007005459
[52] DOI: 10.1103/PhysRevLett.61.408 · doi:10.1103/PhysRevLett.61.408
[53] DOI: 10.1103/RevModPhys.72.603 · doi:10.1103/RevModPhys.72.603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.