zbMATH — the first resource for mathematics

Invariant states in inclined layer convection. II: Bifurcations and connections between branches of invariant states. (English) Zbl 07228284
Summary: Convection in a layer inclined against gravity is a thermally driven non-equilibrium system, in which both buoyancy and shear forces drive spatio-temporally complex flows. As a function of the strength of thermal driving and the angle of inclination, a multitude of convection patterns is observed in experiments and numerical simulations. Several observed patterns have been linked to exact invariant states of the fully nonlinear three-dimensional Oberbeck-Boussinesq equations. These exact equilibria, travelling waves and periodic orbits reside in state space and, depending on their stability properties, are transiently visited by the dynamics or act as attractors. To explain the dependence of observed convection patterns on control parameters, we study the parameter dependence of the state space structure. Specifically, we identify the bifurcations that modify the existence, stability and connectivity of invariant states. We numerically continue exact invariant states underlying spatially periodic convection patterns at \(Pr=1.07\) under changing control parameters for a temperature difference between the walls and inclination angle. The resulting state branches cover various inclinations from horizontal layer convection to vertical layer convection and beyond. The collection of all computed branches represents an extensive bifurcation network connecting 16 different invariant states across control parameter values. Individual bifurcation structures are discussed in detail and related to the observed complex dynamics of individual convection patterns. Together, the bifurcations and associated state branches indicate at what control parameter values which invariant states coexist. This provides a nonlinear framework to explain the multitude of complex flow dynamics arising in inclined layer convection.

76 Fluid mechanics
Full Text: DOI
[1] Argyris, J., Faust, G. & Haase, M.1993Routes to chaos and turbulence. A computational introduction. Phil. Trans. R. Soc. Lond. A344 (1671), 207-234. · Zbl 0787.58032
[2] Bergeon, A. & Knobloch, E.2002Natural doubly diffusive convection in three-dimensional enclosures. Phys. Fluids14 (9), 3233-3250. · Zbl 1185.76049
[3] Bodenschatz, E., Pesch, W. & Ahlers, G.2000Recent developments in Rayleigh-Bénard convection. Annu. Rev. Fluid Mech.32 (1), 709-778. · Zbl 0988.76033
[4] Busse, F. H.1978Non-linear properties of thermal convection. Rep. Prog. Phys.41 (12), 1929-1967.
[5] Busse, F. H. & Clever, R. M.1979Instabilities of convection rolls in a fluid of moderate Prandtl number. J. Fluid Mech.91 (2), 319-335.
[6] Busse, F. H. & Clever, R. M.1992Three-dimensional convection in an inclined layer heated from below. J. Engng Maths26 (1), 1-19. · Zbl 0825.76776
[7] Busse, F. H. & Clever, R. M.1996The sequence-of-bifurcations approach towards an understanding of complex flows. In Mathematical Modeling and Simulation in Hydrodynamic Stability (ed. Riahi, D. N.), pp. 15-34. World Scientific. · Zbl 0861.76026
[8] Busse, F. H. & Clever, R. M.2000Bursts in inclined layer convection. Phys. Fluids12 (8), 2137-2140. · Zbl 1184.76076
[9] Busse, F. H. & Whitehead, J. A.1974Oscillatory and collective instabilities in large Prandtl number convection. J. Fluid Mech.66 (1), 67-79.
[10] Chen, Y.-M. & Pearlstein, A. J.1989Stability of free-convection flows of variable-viscosity fluids in vertical and inclined slots. J. Fluid Mech.198, 513-541. · Zbl 0662.76060
[11] Chossat, P. & Iooss, G.The Couette-Taylor Problem, , vol. 102. Springer. · Zbl 0817.76001
[12] Clever, R. M.1973Finite amplitude longitudal convection rolls in an inclined layer. Trans. ASME J. Heat Transfer95 (3), 407-408.
[13] Clever, R. M. & Busse, F. H.1977Instabilities of longitudinal convection rolls in an inclined layer. J. Fluid Mech.81 (1), 107-127. · Zbl 0361.76044
[14] Clever, R. M. & Busse, F. H.1992Three-dimensional convection in a horizontal fluid layer subjected to a constant shear. J. Fluid Mech.234, 511-527. · Zbl 0744.76052
[15] Clever, R. & Busse, F.1995Tertiary and quarternary solutions for convection in a vertical fluid layer heated from the side. Chaos, Solitons Fractals5 (10), 1795-1803.
[16] Cross, M. & Greenside, H.2009Pattern Formation and Dynamics in Nonequilibrium Systems. Cambridge University Press. · Zbl 1177.82002
[17] Daniels, K. E. & Bodenschatz, E.2002Defect turbulence in inclined layer convection. Phys. Rev. Lett.88 (3), 034501.
[18] Daniels, K. E., Brausch, O., Pesch, W. & Bodenschatz, E.2008Competition and bistability of ordered undulations and undulation chaos in inclined layer convection. J. Fluid Mech.597, 261-282. · Zbl 1133.76020
[19] Daniels, K., Plapp, B. & Bodenschatz, E.2000Pattern formation in inclined layer convection. Phys. Rev. Lett.84 (23), 5320-5323.
[20] Daniels, K. E., Wiener, R. J. & Bodenschatz, E.2003Localized transverse bursts in inclined layer convection. Phys. Rev. Lett.91 (11), 114501.
[21] Dijkstra, H. A., Wubs, F. W., Cliffe, A. K., Doedel, E., Hazel, A. L., Lucarini, V., Salinger, A. G., Phipps, E. T., Sanchez-Umbria, J., Schuttelaars, H.et al.2014Numerical bifurcation methods and their application to fluid dynamics: analysis beyond simulation. Commun. Comput. Phys.15 (1), 1-45. · Zbl 1373.76026
[22] Eckhardt, B., Schneider, T. M., Hof, B. & Westerweel, J.2007Turbulence transition in pipe flow. Annu. Rev. Fluid Mech.39 (1), 447-468.
[23] Fujimura, K. & Kelly, R. E.1993Mixed mode convection in an inclined slot. J. Fluid Mech.246, 545-568. · Zbl 0787.76022
[24] Gershuni, G. Z. & Zhukhovitskii, E. M.1969Stability of plane-parallel convective motion with respect to spatial perturbations. Prikl. Mat. Mekh.33 (5), 855-860.
[25] Gibson, J. F., Halcrow, J. & Cvitanović, P.2008Visualizing the geometry of state space in plane Couette flow. J. Fluid Mech.611, 107-130. · Zbl 1151.76453
[26] Gibson, J. F., Reetz, F., Azimi, S., Ferraro, A., Kreilos, T., Schrobsdorff, H., Farano, M., Yesil, A. F., Schütz, S. S., Culpo, M.et al. 2019 Channelflow 2.0., (in preparation). Available at: https://www.channelflow.ch.
[27] Golubitsky, M. & Stewart, I.2002The Symmetry Perspective. Birkhäuser Basel. · Zbl 1031.37001
[28] Guckenheimer, J. & Holmes, P.1983Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, , vol. 42. Springer. · Zbl 0515.34001
[29] Hart, J. E.1971Transition to a wavy vortex régime in convective flow between inclined plates. J. Fluid Mech.48 (2), 265-271.
[30] Juniper, M. P. & Sujith, R.2018Sensitivity and nonlinearity of thermoacoustic oscillations. Annu. Rev. Fluid Mech.50 (1), 661-689. · Zbl 1384.76050
[31] Kawahara, G., Uhlmann, M. & Van Veen, L.2012The significance of simple invariant solutions in turbulent flows. Annu. Rev. Fluid Mech.44 (1), 203-225. · Zbl 1352.76031
[32] Kerswell, R. R.2005Recent progress in understanding the transition to turbulence in a pipe. Nonlinearity18 (6), R17-R44.
[33] Knobloch, E.1986Oscillatory convection in binary mixtures. Phys. Rev. A34 (2), 1538-1549.
[34] Knobloch, E.2015Spatial localization in dissipative systems. Annu. Rev. Condens. Matter Phys.6 (1), 325-359.
[35] Krupa, M.1997Robust heteroclinic cycles. J. Nonlinear Sci.7 (2), 129-176. · Zbl 0879.58054
[36] Krupa, M. & Melbourne, I.1995Asymptotic stability of heteroclinic cycles in systems with symmetry. Ergod. Theory Dyn. Sys.15 (1), 121-147. · Zbl 0818.58025
[37] Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S. & Joachim, H.2008Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA105 (6), 1786-1793. · Zbl 1215.86004
[38] Lorenz, E. N.1963Deterministic nonperiodic flow. J. Atmos. Sci.20 (2), 130-141. · Zbl 1417.37129
[39] Mizushima, J. & Tanaka, H.2002aTransition routes of natural convection in a vertical fluid layer. J. Phys. Soc. Japan71 (12), 2898-2906. · Zbl 1071.76021
[40] Mizushima, J. & Tanaka, H.2002bTransitions of natural convection in a vertical fluid layer. Phys. Fluids14 (4), L21-L24. · Zbl 1071.76021
[41] Pinter, A., Lücke, M. & Hoffmann, C.2006Competition between traveling fluid waves of left and right spiral vortices and their different amplitude combinations. Phys. Rev. Lett.96 (4), 1-4.
[42] Pomeau, Y. & Manneville, P.1980Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys.74, 189-197.
[43] Reetz, F. & Schneider, T. M.2020Invariant states in inclined layer convection. Part 1. Temporal transitions along dynamical connections between invariant states. J. Fluid Mech.
[44] Ruth, B. D. W., Hollands, K. G. T. & Raithby, A. N. D. G. D.1980On free convection experiments in inclined air layers heated from below. J. Fluid Mech.96 (3), 461-479.
[45] Sanchez, J., Net, M., Garcıia-Archilla, B. & Simo, C.2004Newton-Krylov continuation of periodic orbits for Navier-Stokes flows. J. Comput. Phys.201 (1), 13-33. · Zbl 1153.76345
[46] Schaeffer, D. G. & Cain, J. W.2016Ordinary Differential Equations: Basics and Beyond, , vol. 65. Springer. · Zbl 1364.34003
[47] Subramanian, P., Brausch, O., Daniels, K. E., Bodenschatz, E., Schneider, T. M. & Pesch, W.2016Spatio-temporal patterns in inclined layer convection. J. Fluid Mech.794, 719-745.
[48] Subramanian, P., Pesch, W. & Schneider, T. M.2015Tertiary patterns in inclined layer convection. In Proceedings of the 15th European Turbulence Conference, 25-28 August, 2015, Delft, The Netherlands. Euromech.
[49] Suri, B., Tithof, J., Grigoriev, R. O. & Schatz, M. F.2017Forecasting fluid flows using the geometry of turbulence. Phys. Rev. Lett.118 (11), 114501.
[50] Tagg, R., Edwards, W. S., Swinney, H. L. & Marcus, S.1989Nonlinear standing waves in Couette-Taylor flow. Phys. Rev. A39 (7), 3734-3738.
[51] Tuckerman, L. S. & Barkley, D.1990Bifurcation analysis of the Eckhaus instability. Physica D: Nonlinear Phenomena46 (1), 57-86. · Zbl 0721.35008
[52] Vest, C. M. & Arpaci, V. S.1969Stability of natural convection in a vertical slot. J. Fluid Mech.36 (1), 1-15. · Zbl 0167.25704
[53] Viswanath, D.2007Recurrent motions within plane Couette turbulence. J. Fluid Mech.580, 339-358. · Zbl 1175.76074
[54] Waleffe, F.1997On a self-sustaining process in shear flows. Phys. Fluids9 (4), 883-900.
[55] Waleffe, F., Boonkasame, A. & Smith, L. M.2015Heat transport by coherent Rayleigh-Bénard convection. Phys. Fluids27 (5), 051702. · Zbl 1326.76096
[56] Weiss, S., Seiden, G. & Bodenschatz, E.2012Pattern formation in spatially forced thermal convection. New J. Phys.14 (5), 053010.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.