×

zbMATH — the first resource for mathematics

Localized edge states nucleate turbulence in extended plane couette cells. (English) Zbl 1189.76258
Summary: We study the turbulence transition of plane Couette flow in large domains where localized perturbations are observed to generate growing turbulent spots. Extending previous studies on the boundary between laminar and turbulent dynamics we determine invariant structures intermediate between laminar and turbulent flow. In wide but short domains we find states that are localized in spanwise direction, and in wide and long domains the states are also localized in downstream direction. These localized states act as critical nuclei for the transition to turbulence in spatially extended domains.

MSC:
76F06 Transition to turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1103/PhysRevLett.98.204501 · doi:10.1103/PhysRevLett.98.204501
[2] Emmons, J. Aeronaut. Sci. 18 pp 490– (1951) · doi:10.2514/8.2010
[3] DOI: 10.1063/1.1566753 · Zbl 1186.76556 · doi:10.1063/1.1566753
[4] DOI: 10.1146/annurev.fluid.39.050905.110308 · doi:10.1146/annurev.fluid.39.050905.110308
[5] DOI: 10.1088/1367-2630/11/1/013040 · doi:10.1088/1367-2630/11/1/013040
[6] Eckhardt, Advances in Turbulence IX pp 701– (2002)
[7] DOI: 10.1017/S0022112092001046 · doi:10.1017/S0022112092001046
[8] DOI: 10.1098/rsta.2007.2132 · doi:10.1098/rsta.2007.2132
[9] DOI: 10.1103/PhysRevLett.96.174101 · doi:10.1103/PhysRevLett.96.174101
[10] DOI: 10.1017/S0022112008003248 · Zbl 1151.76495 · doi:10.1017/S0022112008003248
[11] DOI: 10.1103/PhysRevE.63.046307 · doi:10.1103/PhysRevE.63.046307
[12] DOI: 10.1063/1.3265962 · Zbl 1183.76187 · doi:10.1063/1.3265962
[13] DOI: 10.1103/PhysRevE.78.037301 · doi:10.1103/PhysRevE.78.037301
[14] DOI: 10.1137/080724344 · Zbl 1167.76016 · doi:10.1137/080724344
[15] DOI: 10.1103/PhysRevLett.99.034502 · doi:10.1103/PhysRevLett.99.034502
[16] DOI: 10.1063/1.868631 · doi:10.1063/1.868631
[17] DOI: 10.1098/rsta.2008.0216 · Zbl 1221.76097 · doi:10.1098/rsta.2008.0216
[18] DOI: 10.1063/1.2390553 · Zbl 05359818 · doi:10.1063/1.2390553
[19] DOI: 10.1103/PhysRevLett.79.5250 · doi:10.1103/PhysRevLett.79.5250
[20] Schmid, Stability and Transition of Shear Flows (1999)
[21] DOI: 10.1017/S0022112095001248 · doi:10.1017/S0022112095001248
[22] DOI: 10.1098/rstl.1883.0029 · JFM 16.0845.02 · doi:10.1098/rstl.1883.0029
[23] DOI: 10.1017/S0022112097005818 · Zbl 0898.76028 · doi:10.1017/S0022112097005818
[24] Canuto, Spectral Methods in Fluid Dynamics (1990)
[25] DOI: 10.1103/PhysRevLett.89.014501 · doi:10.1103/PhysRevLett.89.014501
[26] DOI: 10.1063/1.2746816 · Zbl 1163.37317 · doi:10.1063/1.2746816
[27] DOI: 10.1016/0167-2789(86)90104-1 · doi:10.1016/0167-2789(86)90104-1
[28] DOI: 10.1209/epl/i1998-00336-3 · doi:10.1209/epl/i1998-00336-3
[29] DOI: 10.1017/S0022112007006398 · Zbl 1114.76304 · doi:10.1017/S0022112007006398
[30] DOI: 10.1103/PhysRevLett.79.4377 · doi:10.1103/PhysRevLett.79.4377
[31] DOI: 10.1017/S0022112090000829 · doi:10.1017/S0022112090000829
[32] Boberg, Z. Naturforsch. 43a pp 697– (1988)
[33] DOI: 10.1063/1.1564093 · Zbl 1186.76369 · doi:10.1063/1.1564093
[34] Becker, Theorie der Wärme (1966)
[35] DOI: 10.1103/PhysRevLett.103.054502 · doi:10.1103/PhysRevLett.103.054502
[36] DOI: 10.1103/PhysRevLett.94.014502 · doi:10.1103/PhysRevLett.94.014502
[37] Marinc, Laminar-turbulent transition pp 253– (2009)
[38] Manneville, Phys. Rev. E 79 pp 025301(R)– (2009) · doi:10.1103/PhysRevE.79.025301
[39] DOI: 10.1017/S0022112091003130 · Zbl 0850.76256 · doi:10.1017/S0022112091003130
[40] Landau, C.R. Acad. Sci. USSR 44 pp 311– (1944)
[41] Koschmieder, Bénard Cells and Taylor Vortices (1993)
[42] DOI: 10.1088/0951-7715/21/4/T02 · Zbl 1139.35002 · doi:10.1088/0951-7715/21/4/T02
[43] DOI: 10.1143/JPSJ.70.703 · doi:10.1143/JPSJ.70.703
[44] DOI: 10.1038/nature05089 · doi:10.1038/nature05089
[45] DOI: 10.1103/PhysRevLett.91.244502 · doi:10.1103/PhysRevLett.91.244502
[46] DOI: 10.1103/RevModPhys.72.603 · doi:10.1103/RevModPhys.72.603
[47] DOI: 10.1017/S0022112008004618 · Zbl 1156.76395 · doi:10.1017/S0022112008004618
[48] DOI: 10.1063/1.2943675 · Zbl 1182.76226 · doi:10.1063/1.2943675
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.