×

Hyperelliptic Riemann surfaces of infinite genus and solutions of the KdV equation. (English) Zbl 0962.35151

The authors study hyperelliptic Riemann surfaces of infinite genus associated with infinite-gap solutions to the KdV equation \[ u_t= 6uu_x -u_{xxx},\qquad u|_{t=0}=q \tag{1} \] where \(q\) is a function of \(x\in\mathbb R.\)
Their approach is based on an extension of the Its-Matveev formula: Let \({\mathcal M}\) be a hyperelliptic Riemann surface of genus \(g\) (= number of gaps) associated with the fixed gap structure. Let \(\Omega\) be the period matrix of \({\mathcal M},\) and let \(\vartheta_g(z|\Omega)\) be the corresponding Riemann theta function. Then there exist \(U, V\in\mathbb R^g\) and a constant \(C\) such that for every \(W\in\mathbb R^g,\) \[ u(x,t) =-2\frac{d^2}{dx^2}\log\vartheta_g(Ut +Vx + W|\Omega) +C \tag{2} \] is a solution of the KdV equation. The vectors \(U\) and \(V\) are given by periods of certain normalized meromorphic \(1\)-forms on \({\mathcal M}\) with a unique pole at \(\infty\) of order \(2\) and \(4\), respectively, and \(C\) is also determined by \({\mathcal M}.\) The solutions obtained in this way are quasi-periodic. To extend the above formula the authors make use of a Riemann theta function that exists for infinite-genus surfaces whose definition is due to K. Tahara [Nagoya Math. J. 33, 57-73 (1968; Zbl 0167.19102)].
The authors consider in the present paper surfaces \({\mathcal M}={\mathcal M}({\Lambda})\) determined by a sequence of ramification points of the form \[ \Lambda :\lambda_0=0<\lambda_1 <\lambda_2 <\cdots\rightarrow \infty \] where they assume that \(\Lambda\) has no finite points of accumulation. Let \(A_1, B_1, A_2, B_2,\ldots \) be a certain canonical homology basis of \({\mathcal M}.\) They construct explicitly a basis \(\phi_1, \phi_2,\ldots \) for the space of holomorphic square integrable \(1\)-forms on \({\mathcal M},\) which is normalized by \[ \int_{A_i}\phi_j =\delta_{ij}. \] Then they prove that such a basis is uniquely determined and, the period matrix of \({\mathcal M}\) is defined by \[ \Omega =\left (\int_{B_i}\phi_j\right). \] They prove the following theorem: Given a diagonal matrix \(T= \text{diag}(\theta_1, \theta_2,\ldots)\) with \(\theta_j >0\), \(j\geq 1,\) and real numbers \(p > 1\), \(C >0,\) there exists a sequence \(\Lambda\) such that the period matrix \(\Omega\) of \({\mathcal M}(\Lambda)\) is purely imaginary and satisfies \[ |(\Omega -\sqrt{-1}T)_{ij}|\leq \frac{C}{i^pj^p}\theta_i^{1/2}\theta_j^{1/2}\tag{3} \] for all \( i, j\geq 1.\)
In a previous work the authors have introduced an infinite-dimensional analogue \(H_T^p\) of Siegel upper half-space, and the above theorem means that \(\Omega\in H_T^p.\) Let \[ \ell_{p, T}= \left\{(z_i)_{i\in\mathbb N} \in \mathbb C^{\infty}\mid \|z\|^2_{p,T}= \sum_{i\geq 1}|z_i|^2 \theta_i^{-1} i^p< \infty \right\}. \] The authors have also previously defined renormalized theta functions \(\vartheta_T(z|\Omega)\) that depends on \(z\in \ell_{p, t}\) and \(\Omega\in H_T^p.\) Using these theta functions they extend the Its-Matveev formula \((2)\), and construct new solutions to the KdV equation. More precisely, they prove the following theorem:
Let \(p >3\) and \(T=\text{diag}(\theta_1,\theta_2,\ldots)\) be given. Let \(\Omega\) be the period matrix of a hyperelliptic surface \({\mathcal M}\) such that \((3)\) holds. Then \(\Omega\in H_T^p,\) and there exists \(U, V\in \ell_{p, T}\) and \(C\in\mathbb C\) such that for every real \(W\in \ell_{p, T},\) \[ u(x, t) = -2\frac{\text{ d}^2}{\text{ d}x^2}\log\vartheta_g(Ut +Vx + W|\Omega) +C,\quad x, t\in\mathbb R, \] is a nontrivial solution to the KdV equation \((1).\)

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
37K20 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with algebraic geometry, complex analysis, and special functions
14H55 Riemann surfaces; Weierstrass points; gap sequences

Citations:

Zbl 0167.19102
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. D. M. Accola, The bilinear relation on open Riemann surfaces , Trans. Amer. Math. Soc. 96 (1960), 143-161. JSTOR: · Zbl 0118.30003 · doi:10.2307/1993490
[2] E. D. Belokolos, et al., Algebro-Geometric Approach to Nonlinear Integrable Equations , Springer Ser. Nonlinear Dynam., Springer-Verlag, Berlin, 1994. · Zbl 0809.35001
[3] H. Bohr, Almost Periodic Functions , Chelsea Publishing Company, New York, N.Y., 1947. · Zbl 0005.20303
[4] B. Dubrovin, I. Krichever, and S. P. Novikov, Integrable systems, I , Dynamical Systems, IV, Encyclopaedia of Math. Sci., vol. 4, Springer-Verlag, Berlin, 1990, pp. 173-280. · Zbl 0780.58019
[5] B. Dubrovin, V. B. Matveev, and S. P. Novikov, Non-linear equations of Korteweg-de Vries type, finite-zone linear operators, and abelian varieties , Russian Math. Surveys 31 (1976), 59-136. · Zbl 0346.35025 · doi:10.1070/RM1976v031n01ABEH001446
[6] J. D. Fay, Theta functions on Riemann surfaces , Lecture Notes in Math., Springer-Verlag, Berlin, 1973. · Zbl 0281.30013 · doi:10.1007/BFb0060090
[7] J. Feldman, H. Knörrer, and E. Trubowitz, Riemann surfaces of infinite genus, I: \(L^2\)-cohomology, exhaustions with finite charge and theta series , preprint, FIM-ETH, 1994.
[8] A. R. Its and V. B. Matveev, Schrödinger operators with the finite-band spectrum and the \(N\)-soliton solutions of the Korteweg-de Vries equation , Teoret. Mat. Fiz. 23 (1975), no. 1, 51-68.
[9] S. Lang, Elliptic functions , Graduate Texts in Mathematics, vol. 112, Springer-Verlag, New York, 1987. · Zbl 0615.14018
[10] P. D. Lax, Periodic solutions of the KdV equation , Comm. Pure Appl. Math. 28 (1975), 141-188. · Zbl 0295.35004 · doi:10.1002/cpa.3160280105
[11] B. M. Levitan, Almost periodicity of infinite-zone potentials , Math. USSR-Izv. 18 (1982), 249-273. · Zbl 0483.35075 · doi:10.1070/IM1982v018n02ABEH001388
[12] V. B. Matveev, A new method of integrating the Korteweg-de Vries equation , Uspekhi Mat. Nauk 30 (1975), 201-203 (in Russian).
[13] H. P. McKean and P. van Moerbeke, The spectrum of Hill’s equation , Invent. Math. 30 (1975), no. 3, 217-274. · Zbl 0319.34024 · doi:10.1007/BF01425567
[14] H. McKean and E. Trubowitz, Hill’s operator and hyperelliptic function theory in the presence of infinitely many branch points , Comm. Pure Appl. Math. 29 (1976), no. 2, 143-226. · Zbl 0339.34024 · doi:10.1002/cpa.3160290203
[15] H. McKean and E. Trubowitz, Hill’s surfaces and their theta functions , Bull. Amer. Math. Soc. 84 (1978), no. 6, 1042-1085. · Zbl 0428.34026 · doi:10.1090/S0002-9904-1978-14542-X
[16] W. Müller, M. Schmidt, and R. Schrader, Theta functions for infinite period matrices , Internat. Math. Res. Notices (1996), no. 12, 565-587. · Zbl 0872.14038 · doi:10.1155/S1073792896000384
[17] S. P. Novikov, The periodic problem for the Korteweg-de Vries equation, I , Functional Anal. Appl. 8 (1974), 236-246. · Zbl 0299.35017 · doi:10.1007/BF01075697
[18] M. Schmidt, Integrable systems and Riemann surfaces of infinite genus , Mem. Amer. Math. Soc. 122 (1996), no. 581, viii+111. · Zbl 0867.58038
[19] K. Tahara, On the hyperelliptic Riemann surfaces of infinite genus with absolutely convergent Riemann’s theta functions , Nagoya Math. J. 33 (1968), 57-73. · Zbl 0167.19102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.