×

From stratified wakes to rotor-stator flows by an SVV-LES method. (English) Zbl 1161.76499

Summary: We extend a large-eddy simulation (LES) methodology, based on using the spectral vanishing viscosity (SVV) method to stabilize spectral collocation approximations, from the Cartesian to the cylindrical geometry. The capabilities of the SVV-LES approach are illustrated for two very different physical problems: (1) the influence of thermal stratification on the wake of a cylinder, and (2) the instabilities that develop in transitional and fully turbulent rotor-stator flows.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
76F45 Stratification effects in turbulence
76M22 Spectral methods applied to problems in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Andersson H.I. and Lygren M. (2006). LES of open rotor–stator flow. Int. J. Heat Fluid Flow 27(4): 551–557
[2] Bernardi C., Dauge M. and Maday Y. (1999). Spectral Methods for Axisymmetric Domains. Elsevier, Amsterdam · Zbl 0929.35001
[3] Blackburn H.M. and Sherwin S.J. (2004). Formulation of a Galerkin spectral element-fourier method for three-dimensional incompressible flows in cylindrical geometries. J. Comput. Phys. 197(2): 757–778 · Zbl 1106.76418
[4] Boris J.P., Grinstein F.F., Oran E.S. and Kobe R.L. (1992). New insights into large eddy simulation. Fluid Dyn. Res. 10: 199–228
[5] Bouffanais R., Deville M.O., Fischer P.F., Leriche E. and Weill D. (2006). Large-eddy simulation of the lid-driven cubic cavity flow by the spectral element method. J. Sci. Comput. 27(1–3): 151–162 · Zbl 1099.76026
[6] Boyer D.L., Davies P.A., Fernando H.J.S. and Zhang X. (1989). Linearly stratified flow past a horizontal cylinder. Phil. Trans. R. Soc. Lond. A 328: 501–528
[7] Chen G.Q., Du Q. and Tadmor E. (1993). Spectral viscosity approximations to multidimensional scalar conservations laws. Math. Comput. 204: 629–643 · Zbl 0799.35148
[8] Cousin L. and Pasquetti R. (2004). High-order methods for the simulation of transitional to turbulent wakes. In: Lu, Y., Sun, W. and Tang, T. (eds) Advances in Scientific Computing and Applications, Science Press, Beijing
[9] Daily J.W. and Nece R.E. (1960). Chamber dimension effects on induced flow and frictional resistance of enclosed rotating discs. ASME J. Basic Eng. 82: 217–232
[10] Domaradzki J.A. and Saiki E.M. (1997). A subgrid-scale model based on the estimation of unresolved scales of turbulence. Phys. Fluids 9(7): 2148–2164
[11] Gatsky, T.B., Hussaini, M.Y., Lumley, J.L.: Simulation and modeling of turbulent flows. In: Ferziger J.H. (ed.) Large Eddy Simulation, Chap. 3, ICASE/LaRC Series in Computational Science and Engineering, pp. 109–154 (1996)
[12] Geurts B.J. (1997). Inverse modeling for large-eddy simulation. Phys. Fluids 9(12): 3585–3587
[13] Geurts B.J. and Fröhlich Y. (2002). A framework for predicting accuracy limitations in large-eddy simulation. Phys. Fluids 14(2): L41–L44 · Zbl 1185.76143
[14] Geurts B.J. (2004). Elements of Direct and Large-Eddy Simulation. Cambridge University Press, Cambridge
[15] Itoh M., Yamada Y., Imao S. and Gonda M. (1990). Experiments on turbulent flow due to an enclosed rotating disc. In: Rodi, W. and Canic, E.C. (eds) Engineering Turbulence Modelling and Experiments, pp 659–668. Elsevier, New York
[16] Jacques, R., Le Quéré, P., private communication
[17] Kaber O.S.M. (1995). A Legendre pseudo-spectral viscosity method. J. Comput. Phys. 128(1): 165–180 · Zbl 0863.65065
[18] Karamanos, G.S., Sherwin, S.J., Morrison, J.: Large eddy simulation using unstructured spectral/hp elements. In: Second International Conference on Direct Numerical Simulation and Large Eddy Simulation, Rutgers, New Jersey (1999) · Zbl 0948.76562
[19] Karamanos G.S. and Karniadakis G.E. (2000). A spectral vanishing viscosity method for large-eddy simulation. J. Comput. Phys. 163: 22–50 · Zbl 0984.76036
[20] Kirby R.M. and Karniadakis G.E. (2002). Coarse resolution turbulence simulations with spectral vanishing viscosity-large eddy simulation (SVV–LES). J. Fluids Eng. 124(4): 886–891
[21] Kirby R.M. and Sherwin S.J. (2006). Stabilisation of spectral/hp element methods through spectral vanishing viscosity: application to fluid mechanics modeling. Comput. Methods Appl. Mech. Eng. 195: 3128–3144 · Zbl 1115.76060
[22] Launder B.E. and Tselepidakis D.P. (2004). Application of a new second moment closure to turbulent channel flow rotating in orthogonal mode. Int. J. Heat Fluid Flow 15: 2
[23] Lesieur M., Métais O. and Comte P. (2004). Large-eddy simulations of turbulence. Cambridge University Press, Cambridge · Zbl 1032.76027
[24] Littell H.S. and Eaton J.K. (1994). Turbulence characteristics of the boundary layer on a rotating disc. J. Fluid. Mech. 266: 175–207
[25] Lygren M. and Andersson H.I. (2001). Turbulent flow between a rotating and a stationary disc. J. Fluid. Mech. 426: 297–326 · Zbl 1010.76042
[26] Lygren M. and Andersson H.I. (2004). Large eddy simulations of the turbulent flow between a rotating and a stationary disc. Z. Angew. Math. Phys. 55: 268–281 · Zbl 1120.76318
[27] Maday Y., Kaber S.M.O. and Tadmor E. (1993). Legendre pseudo-spectral viscosity method for nonlinear conservation laws. SIAM J. Numer. Anal. 30(2): 321–342 · Zbl 0774.65072
[28] Pasquetti R. and Bwemba R. (1994). A spectral algorithm for the Stokes problem in vorticity-vector potential formulation and cylindrical geometry. Comput. Methods Appl. Mech. Eng. 117: 71–90 · Zbl 0846.76073
[29] Pasquetti R. and Xu C.J. (2002). High-order algorithms for large eddy simulation of incompressible flows. J. Sci. Comput. 17(1–4): 273–284 · Zbl 1036.76026
[30] Pasquetti R. (2005). High-order LES modeling of turbulent incompressible flows. C.R. Acad. Sci. Paris 333: 39–49 · Zbl 1223.76028
[31] Pasquetti, R.: Spectral vanishing viscosity method for LES: Sensitivity to the SVV control parameters. J. Turbulence 6(N12), Special issue: Marseille Euromech Colloquium (2005)
[32] Pasquetti R. (2006). Spectral vanishing viscosity method for large eddy simulation of turbulent flows. J. Sci. Comp. 27(1–3): 365–375 · Zbl 1101.76028
[33] Pasquetti, R.: Spectral Vanishing Viscosity Method for High-Order LES: Computation of the Dissipation Rates. In: ECCOMAS CFD 2006 Congress, Egmond aan Zee, Holland, 5–8 September 2006
[34] Pasquetti, R., Bwemba, R., Cousin, L.: A pseudo-penalization method for high Reynolds number unsteady flows. Appl. Numer. Math. (On line) · Zbl 1225.76218
[35] Patera, A.T., Orszag, S.A.: Instability of pipe flow. In: Nonlinear Problems: Present and Future, North-Holland, Amsterdam (1982) · Zbl 0497.76059
[36] Piomelli U. and Balaras E. (2002). Wall-layer models for large-eddy simulations. Annu. Rev. Fluid Mech. 34: 349–374 · Zbl 1006.76041
[37] Poncet S., Chauve M.P. and Schiestel R. (2005). Batchelor versus stewartson flow structures in a rotor–stator cavity with throughflow. Phys. Fluids 17(7): 075110 · Zbl 1187.76423
[38] Raspo I., Hugues S., Serre E., Randriamampianina A. and Bontoux P. (2002). Spectral projection methods for the simulation of complex three-dimensional rotating flows. Comput. Fluids 31(4-7): 745–767 · Zbl 1028.76036
[39] Sagaut P. (2005). Large-Eddy Simulation for Incompressible Flows: An Introduction. Scientific Computation Series. Springer, Heidelberg
[40] Schouveiler L., Le Gal P., Chauve M.P. and Takeda Y. (1999). Spiral and Circular waves in the flow between a rotating and a stationary disc. Exp. Fluids 26: 179–187
[41] Serre E., Crespodel Arco I. and Bontoux P. (2001). Annular and spiral patterns in flows between rotating and stationary discs. J. Fluid. Mech. 434: 65–100 · Zbl 1012.76099
[42] Serre E., Tuliska-Sznitko E. and Bontoux P. (2004). Coupled theoretical and numerical study of the flow transition between a rotating and a stationary disc. Phys. Fluids 16(3): 688–706 · Zbl 1186.76468
[43] Serre E. and Pulicani J.P. (2001). 3D pseudo-spectral method for convection in rotating cylinder. Comput. Fluids 30(4): 491–519 · Zbl 1057.76049
[44] Séverac E., Serre E. and Bontoux P. (2005). A spectral vanishing viscosity technique as large eddy simulation of transitional rotor–stator flows. ETC6 Congress, Lille
[45] Stolz S. and Adams N.A. (1999). An approximate deconvolution procedure for large-eddy simulation. Phys. Fluids 11(7): 1699–1701 · Zbl 1147.76506
[46] Stolz S., Adams N.A. and Kleiser L. (2001). An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows. Phys. Fluids 13(4): 997–1015 · Zbl 1184.76530
[47] Tadmor E. (1989). Convergence of spectral methods for nonlinear conservation laws. SIAM J. Numer. Anal. 26(1): 30–44 · Zbl 0667.65079
[48] Wu X. and Squires K.D. (2000). Prediction and investigation of the turbulent flow over a rotating disc. J. Fluid. Mech. 418: 231–264 · Zbl 0986.76030
[49] Xu C.J. and Pasquetti R. (2004). Stabilized spectral element computations of high Reynolds number incompressible flows. J. Comput. Phys. 196(2): 680–704 · Zbl 1109.76342
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.