×

Efficient numerical simulation and optimization of fluid-structure interaction. (English) Zbl 1215.74019

Bungartz, Hans-Joachim (ed.) et al., Fluid-structure interaction II. Modelling, simulation, optimization. Selected papers based on the presentations at the first international workshop on computational engineering – special topic fluid-structure interactions, Herrsching, Germany, October 2009. Berlin: Springer (ISBN 978-3-642-14205-5/hbk; 978-3-642-14206-2/ebook). Lecture Notes in Computational Science and Engineering 73, 131-158 (2010).
The authors use the partitioned solution approach and give a special emphasis to the grid movement techniques, for which they consider algebraic and elliptic approaches as well as a special treatment of edges and faces. A proper combination of these methods ensures a high grid quality also for large deformations of the structure which, in particular, is of high importance for reliably simulation involving turbulent flows. The possibilities for accelerating the computations by the usage of multigrid methods, adaptive underrelaxation, and displacement prediction are discussed. The obtained results indicate the high potential of such approaches. The authors present a concept for integrating the FSI solver into an optimization procedure for FSI problems which is based on NURBS surface representation and on a unified treatment of grid movement and shape variation. Results for an exemplary test case illustrate the capabilities of the integrated optimization procedure.
For the entire collection see [Zbl 1201.76008].

MSC:

74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74S20 Finite difference methods applied to problems in solid mechanics
76M20 Finite difference methods applied to problems in fluid mechanics

Software:

MpCCI
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] FASTEST - User Manual. Institute of Numerical Methods in Mechanical Engineering, Technische Universität Darmstadt (2004)
[2] MpCCI - Mesh-Based Parallel Code Coupling Interface. User Guide V2.0. Fraunhofer, SCAI (2004)
[3] Aitken, C., Studies in practical mathematics, II. the evaluation of the latent roots and latent vectors of a matrix. Royal Societiy of Edinburgh, 57, 269-304 (1937) · Zbl 0017.14701
[4] Becker, G.; Falk, U.; Schäfer, M.; Hartmann, S.; Meister, A.; Schäfer, M.; Turek, S., Shape optimization with higher-order surfaces in consideration of fluid-structure interaction, International Workshop on Fluid-Structure Interaction: Theory (2009), Kassel: Numerics and Application. Kassel Univ. Press, Kassel
[5] Becker, G.; Siegmann, J.; Michaelis, J.; Schäfer, M.; Rodrigues, HC; Guedes, JM; Fernandes, PR; Neves, MM, Comparison of a derivative-free and a derivative-based shape optimization method, Proceedings of the 8th World Congress on Structural and Multidisciplinary Optimization (2009), Portugal: Lisbon, Portugal
[6] Dahmen, W.; Reusken, A., Numerik für Ingenieure und Naturwissenschaftler (2008), Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg · Zbl 1153.65002
[7] De Boor, C.: A practical guide to splines. Springer (2001) · Zbl 0987.65015
[8] Farin, GE; Hoschek, J.; Kim, MS, Handbook of computer aided geometric design (2002), Amsterdam: Elsevier, Amsterdam · Zbl 1003.68179
[9] Ferziger, J.; Perić, M., Computational Methods for Fluid Dynamics (1996), Berlin: Springer, Berlin · Zbl 0869.76003
[10] Gomes, J., Lienhart, H.: Experimental study on a fluid-structure interaction reference test case. In: H.J. Bungartz, M. Schäfer (eds.) Fluid-Structure Interaction - Modelling, Simulation, Optimisation, LNCSE, vol. 53, pp. 356-370. Springer (2006)
[11] Hackbusch, W., Multi-Grid Methods and Applications (1985), Berlin: Springer-Verlag, Berlin · Zbl 0595.65106
[12] Irons, B.; Tuck, R., A version of the aitken accelerator for computer iteration, International Journal of Numerical Methods in Engineering, 1, 275-27 (1969) · Zbl 0256.65021
[13] Jung, H.; Kim, K., A new parameterisation method for NURBS surface interpolation, The International Journal of Advanced Manufacturing Technology, 16, 11, 784-790 (2000)
[14] Ma, W.; Kruth, JP, NURBS curve and surface fitting for reverse engineering, The International Journal of Advanced Manufacturing Technology, 14, 12, 918-927 (1998)
[15] Mohammadi, B.; Pironneau, O., Shape optimization in fluid mechanics, Annual Review of Fluid Mechanics, 36, 1, 255-279 (2004) · Zbl 1076.76020
[16] Mok, D.: Partitionierte Lösungsansätze in der Strukturdynamik und der Fluid-Struktur-Interaktion. Ph.D. thesis, Institut für Baustatik, Universität Stuttgart (2001)
[17] Nelder, JA; Mead, R., A simplex method for function minimization, The Computer Journal, 7, 4, 308-313 (1965) · Zbl 0229.65053
[18] Ogden, R.W.: Non-Linear Elastic Deformations. Dover Publications (1997)
[19] Peters, G.; Wilkinson, JH, The least squares problem and pseudo-inverses, The Computer Journal, 13, 3, 309-316 (1970) · Zbl 0195.44804
[20] Piegl, L.; Tiller, W., The NURBS book (1996), New York: Springer Verlag, New York
[21] Schäfer, M.; Heck, M.; Yigit, S.; Bungartz, HJ; Schäfer, M., An implicit partitoned method for the numerical simulation of fluid-structure interaction, Fluid-Structure Interaction: Modelling, Simulation, Optimization, 53, pp. 171-194 (2006), Berlin, Heidelberg: Springer, Berlin, Heidelberg · Zbl 1323.74093
[22] Schäfer, M., Lange, H., Heck, M.: Implicit partitioned fluid-structure interaction coupling. In: Proceedings of 1er Colloque du GDR Interactions Fluide-Structure, pp. 31-88 (2005)
[23] Schäfer, M., Meynen, S., Sieber, R., Teschauer, I.: Efficiency of multigrid methods for the numerical simulation of coupled fluid-solid problems. Scientific Computing and Applications, Advances in Computation: Theory and Practice pp. 257-266 (2001) · Zbl 1153.76388
[24] Schoenberg, IJ; Whitney, A., On Polya frequency function, III. The positivity of translation determinants with an application to the interpolation problem by spline curves. Transactions of the American Mathematical Society, 74, 2, 246-259 (1953) · Zbl 0051.33606
[25] Siegmann, J.; Becker, G.; Michaelis, J.; Schäfer, M.; Rodrigues, HC; Guedes, JM; Fernandes, PR; Neves, MM, A general sensitivity based shape optimization approach for arbitrary surfaces, Proceedings of the 8th World Congress on Structural and Multidisciplinary Optimization (2009), Portugal: Lisbon, Portugal
[26] Spekreijse, S., Elliptic grid generation based on laplace equations and algebraic transformations, Journal of Computational Physics, 118, 38-61 (1995) · Zbl 0823.65120
[27] Sternel, DC; Schäfer, M.; Heck, M.; Yigit, S., Efficiency and accuracy of fluid-structure interaction simulations using an implicit partitioned approach, Computational Mechanics, 43, 1, 103-113 (2008) · Zbl 1234.74053
[28] Taylor., R.: FEAP - A Finite Element Analysis Programm. Version 7.4 User Manual. University of California at Berkeley (2002)
[29] Tiller, W., Rational B-splines for curve and surface representation, Computer Graphics and Applications, IEEE, 3, 6, 61-69 (1983)
[30] Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics, Third Edition. Springer (2004) · Zbl 1068.74002
[31] Turek, S.; Hron, J.; Bungartz, HJ; Schäfer, M., Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow, Fluid-Structure Interaction: Modelling, Simulation, Optimization, 53, pp. 371-385 (2006), Berlin, Heidelberg: Springer, Berlin, Heidelberg · Zbl 1323.76049
[32] Yigit, S.; Heck, M.; Sternel, DC; Schäfer, M., Efficiency of Fluid-Structure Interaction Simulations with Adaptive Underrelaxation and Multigrid Acceleration, International Journal of Multiphysics, 1, 85-99 (2007)
[33] Yigit, S.: Phänomene der Fluid-Struktur-Wechselwirkung und deren numerische Berechnung. Ph.D. thesis, Institute of Numerical Methods in Mechanical Engineering, TU Darmstadt (2008) · Zbl 1151.76304
[34] Yigit, S.; Schäfer, M.; Heck, M., Grid movement techniques and their influence on laminar fluid structure interaction computations, Journal of Fluids and Structures, 24, 6, 819-832 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.