zbMATH — the first resource for mathematics

Courant bracket as T-dual invariant extension of Lie bracket. (English) Zbl 1461.83077
Summary: We consider the symmetries of a closed bosonic string, starting with the general coordinate transformations. Their generator takes vector components \(\xi^\mu\) as its parameter and its Poisson bracket algebra gives rise to the Lie bracket of its parameters. We are going to extend this generator in order for it to be invariant upon self T-duality, i.e. T-duality realized in the same phase space. The new generator is a function of a \(2D\) double symmetry parameter \(\Lambda\), that is a direct sum of vector components \(\xi^\mu\), and 1-form components \(\lambda_\mu\). The Poisson bracket algebra of a new generator produces the Courant bracket in a same way that the algebra of the general coordinate transformations produces Lie bracket. In that sense, the Courant bracket is T-dual invariant extension of the Lie bracket. When the Kalb-Ramond field is introduced to the model, the generator governing both general coordinate and local gauge symmetries is constructed. It is no longer self T-dual and its algebra gives rise to the \(B\)-twisted Courant bracket, while in its self T-dual description, the relevant bracket becomes the \(\theta\)-twisted Courant bracket. Next, we consider the T-duality and the symmetry parameters that depend on both the initial coordinates \(x^\mu\) and T-dual coordinates \(y_\mu\). The generator of these transformations is defined as an inner product in a double space and its algebra gives rise to the C-bracket.
83E30 String and superstring theories in gravitational theory
81T35 Correspondence, duality, holography (AdS/CFT, gauge/gravity, etc.)
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
PDF BibTeX Cite
Full Text: DOI arXiv
[1] Courant, GPL, Dirac manifolds, Trans. Am. Math. Soc., 319, 631 (1990) · Zbl 0850.70212
[2] Z.-J. Liu, A. WEinstein and P. Xu, Manin Triples for Lie Bialgebroids, J. Diff. Geom.45 (1997) 547 [dg-ga/9508013] [INSPIRE]. · Zbl 0885.58030
[3] Alekseev, A.; Strobl, T., Current algebras and differential geometry, JHEP, 03, 035 (2005)
[4] Halmagyi, N., Non-geometric String Backgrounds and Worldsheet Algebras, JHEP, 07, 137 (2008)
[5] N. Halmagyi, Non-geometric Backgrounds and the First Order String Sigma Model, arXiv:0906.2891 [INSPIRE].
[6] I. Ivanišević, Lj. Davidović and B. Sazdović, Courant bracket found out to be T-dual to Roytenberg bracket, Eur. Phys. J. C80 (2020) 571 [arXiv:1903.04832] [INSPIRE].
[7] Hull, C.; Zwiebach, B., The Gauge algebra of double field theory and Courant brackets, JHEP, 09, 090 (2009)
[8] Siegel, W., Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D, 47, 5453 (1993)
[9] Siegel, W., Superspace duality in low-energy superstrings, Phys. Rev. D, 48, 2826 (1993)
[10] Lj. Davidović and B. Sazdović, The T-dual symmetries of a bosonic string, Eur. Phys. J. C78 (2018) 600 [arXiv:1806.03138] [INSPIRE]. · Zbl 1298.81263
[11] D. Roytenberg, A Note on quasi Lie bialgebroids and twisted Poisson manifolds, Lett. Math. Phys.61 (2002) 123 [math/0112152] [INSPIRE]. · Zbl 1027.53104
[12] Becker, K.; Becker, M.; Schwarz, J., String Theory and M-Theory: A Modern Introduction (2007), Cambridge, U.K.: Cambridge University Press, Cambridge, U.K. · Zbl 1123.81001
[13] Zwiebach, B., A First Course in String Theory (2004), Cambridge, U.K.: Cambridge University Press, Cambridge, U.K. · Zbl 1072.81001
[14] Lj. Davidović and B. Sazdović, T-duality in a weakly curved background, Eur. Phys. J. C74 (2014) 2683 [arXiv:1205.1991] [INSPIRE]. · Zbl 1317.81218
[15] Buscher, TH, A Symmetry of the String Background Field Equations, Phys. Lett. B, 194, 59 (1987)
[16] Alvarez, E.; Álvarez-Gaumé, L.; Lozano, Y., An Introduction to T duality in string theory, Nucl. Phys. B Proc. Suppl., 41, 1 (1995) · Zbl 1076.81554
[17] Giveon, A.; Porrati, M.; Rabinovici, E., Target space duality in string theory, Phys. Rept., 244, 77 (1994)
[18] Giveon, A.; Rabinovici, E.; Veneziano, G., Duality in String Background Space, Nucl. Phys. B, 322, 167 (1989)
[19] Hull, C.; Zwiebach, B., Double Field Theory, JHEP, 09, 099 (2009)
[20] M. Gualtieri, Generalized complex geometry, Ph.D. thesis, Oxford University, U.K. (2003) math/0401221 [INSPIRE]. · Zbl 1235.32020
[21] P. Ševera and A. WEinstein, Poisson geometry with a 3 form background, Prog. Theor. Phys. Suppl.144 (2001) 145 [math/0107133] [INSPIRE]. · Zbl 1029.53090
[22] Seiberg, N.; Witten, E., String theory and noncommutative geometry, JHEP, 09, 032 (1999) · Zbl 0957.81085
[23] Shelton, J.; Taylor, W.; Wecht, B., Nongeometric flux compactifications, JHEP, 10, 085 (2005)
[24] J.A. de Azcarraga, A.M. Perelomov and J.C. Perez Bueno, The Schouten-Nijenhuis bracket, cohomology and generalized Poisson structures, J. Phys. A29 (1996) 7993 [hep-th/9605067] [INSPIRE]. · Zbl 0898.58026
[25] Kosmann-Schwarzbach, Y., From Poisson algebras to Gerstenhaber algebras, Annales Inst. Fourier, 46, 1243 (1996) · Zbl 0858.17027
[26] Lj. Davidović, B. Nikolic and B. Sazdović, Canonical approach to the closed string non-commutativity, Eur. Phys. J. C74 (2014) 2734 [arXiv:1307.6158] [INSPIRE]. · Zbl 1317.81218
[27] Lj. Davidović, I. Ivanišević, B. Sazdović, Courant bracket twisted both by a 2-form B and by a bi-vector θ, in preparation.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.