zbMATH — the first resource for mathematics

Reversible skew Laurent polynomial rings and deformations of Poisson automorphisms. (English) Zbl 1188.16022
The authors consider the skew Laurent polynomial ring \(S=R[x^{\pm 1};\alpha]\), where \(\alpha\) is an automorphism of \(R\), and study involutions \(\theta\) on \(S\) such that \(\theta(x)=x^{-1}\) and the restriction \(\theta|_R\) is an involution \(\gamma\) of \(R\). They show that such \(\theta\) exists if and only if \(\gamma\alpha\gamma^{-1}=\alpha^{-1}\), in which case they say that \(\theta\) is a reversing automorphism and \(S\) is a reversible skew Laurent polynomial ring. The concept of reversibility arises in dynamical systems and the theory of flows.
The authors study invariants for reversing automorphisms and then apply their results to two principal examples: the localization at the powers of a normal element of the enveloping algebra of the two-dimensional non-Abelian Lie algebra and the coordinate ring of the quantum torus. Both these rings are deformations of Poisson algebras over the base field \(\mathbb{F}\) and in each case the ring of \(\theta\)-invariants is a deformation of the coordinate ring of a surface in \(\mathbb{F}^3\) and is a factor of a deformation of \(\mathbb{F}[x_1,x_2,x_3]\) for a Poisson bracket determined by the appropriate surface. Both deformations are examples of algebras determined by noncommutative potentials.

16S36 Ordinary and skew polynomial rings and semigroup rings
16W20 Automorphisms and endomorphisms
17B63 Poisson algebras
16S80 Deformations of associative rings
16W22 Actions of groups and semigroups; invariant theory (associative rings and algebras)
16W10 Rings with involution; Lie, Jordan and other nonassociative structures
Full Text: DOI arXiv
[1] DOI: 10.1006/jabr.1998.7511 · Zbl 0922.17006 · doi:10.1006/jabr.1998.7511
[2] DOI: 10.1007/978-3-0348-8205-7 · doi:10.1007/978-3-0348-8205-7
[3] DOI: 10.1090/S0002-9947-1976-0402815-3 · doi:10.1090/S0002-9947-1976-0402815-3
[4] Devaney R., An Introduction to Chaotic Dynamical Systems (1989) · Zbl 0695.58002
[5] DOI: 10.1080/00927879608825643 · Zbl 0851.16025 · doi:10.1080/00927879608825643
[6] DOI: 10.1016/S0022-4049(97)00079-0 · Zbl 0934.16025 · doi:10.1016/S0022-4049(97)00079-0
[7] DOI: 10.1088/0305-4470/23/5/001 · Zbl 0715.17017 · doi:10.1088/0305-4470/23/5/001
[8] DOI: 10.1017/CBO9780511841699 · doi:10.1017/CBO9780511841699
[9] DOI: 10.1063/1.532856 · Zbl 0959.17015 · doi:10.1063/1.532856
[10] DOI: 10.1063/1.1328078 · Zbl 1032.17022 · doi:10.1063/1.1328078
[11] DOI: 10.1016/S0022-247X(02)00164-6 · Zbl 1015.37031 · doi:10.1016/S0022-247X(02)00164-6
[12] DOI: 10.1080/10586458.2002.10504479 · Zbl 1117.32300 · doi:10.1080/10586458.2002.10504479
[13] DOI: 10.1006/jabr.1999.8264 · Zbl 0958.16030 · doi:10.1006/jabr.1999.8264
[14] DOI: 10.1081/AGB-120013183 · Zbl 1010.16024 · doi:10.1081/AGB-120013183
[15] Krause G. R., Grad. Studies in Maths., in: Growth of Algebras and Gelfand–Kirillov Dimension (2000)
[16] Lorenz M., Multiplicative Invariant Theory, Encyclopaedia of Mathematical Sciences 135 (2005) · Zbl 1078.13003
[17] McConnell J. C., Noncommutative Noetherian Rings (1987) · Zbl 0644.16008
[18] O’Farrell A. G., Irish Math. Soc. Bull. pp 41–
[19] Passman D. S., Infinite Crossed Products (1989) · Zbl 0662.16001
[20] DOI: 10.1016/j.jalgebra.2005.10.029 · Zbl 1113.17009 · doi:10.1016/j.jalgebra.2005.10.029
[21] DOI: 10.1090/S0273-0979-01-00894-1 · Zbl 1042.16016 · doi:10.1090/S0273-0979-01-00894-1
[22] DOI: 10.1016/j.jalgebra.2005.05.033 · Zbl 1079.15005 · doi:10.1016/j.jalgebra.2005.05.033
[23] DOI: 10.1142/S0219498804000940 · Zbl 1062.33018 · doi:10.1142/S0219498804000940
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.