zbMATH — the first resource for mathematics

Allocation policy for testing effort of modular software system under budgetary constraint. (English) Zbl 1219.90208
Summary: During the last two decades we have seen a very rapid development in information technology and software development. In fact, the software developer’s aims to develop reliable software at minimum cost and they try to release at appropriate time. Software testing is an important phase in software development life cycle. Usually, software contains a number of different modules to perform specific functions that are tested independently by unit test. In real life, it is not possible to perfectly debug all faults from a module during testing phase. Our aim is to remove maximum number of faults from each module within the specified resource budget at the minimum cost. The purpose of this paper is to discuss two types of optimization problems. The first optimization problem is corresponding to bicriteria problem in which we have considered the maximum fault removal from each module with minimum cost, subject to total allocated resource budget. Since the software developers desire to remove at least some number of faults from each module, so an aspiration level of fault removal from each module is introduced in the second optimization problem. Finally numerical examples are given to illustrate the correctness of the problem.
90C90 Applications of mathematical programming
90C29 Multi-objective and goal programming
90C39 Dynamic programming
Full Text: DOI Link
[1] Bhatia D., Indian Journal of pure and applied Mathematics 28 (8) pp 1031– (1997)
[2] DOI: 10.1007/BFb0034288 · doi:10.1007/BFb0034288
[3] DOI: 10.1080/02331930108844543 · Zbl 1006.90081 · doi:10.1080/02331930108844543
[4] DOI: 10.1016/0022-247X(68)90201-1 · Zbl 0181.22806 · doi:10.1016/0022-247X(68)90201-1
[5] DOI: 10.1109/TR.1979.5220566 · Zbl 0409.68009 · doi:10.1109/TR.1979.5220566
[6] Hadley G., Nonlinear and Dynamic Programming (1964) · Zbl 0179.24601
[7] Huang , C-Y , Kuo , S-Y. and Chen , J. Y. 1997. Analysis of a software reliability growth model with logistic testing eff ort function. 1997. Proceeding of 8th International Symposium on software reliability engineering, pp.378–388. · doi:10.1109/ISSRE.1997.630886
[8] Ichimori , T , Yamada , S. and Nishiwaki , M. 1993. Optimal allocation policies for testing-resource based on a Software Reliability Growth Model. 1993. Proceedings of the Australia–Japan workshop on stochastic models in engineering, technology and management, pp.182–189. · Zbl 0836.62077
[9] Kapur P. K, ”Bicriterion release policy for exponential software reliability growth model” Recherche Operationnelle– Operations Research 28 pp 165– (1994) · Zbl 0857.90077
[10] DOI: 10.1049/sej.1992.0030 · doi:10.1049/sej.1992.0030
[11] Kapur P. K., OPSEARCH 27 (2) pp 109– (1990)
[12] DOI: 10.1142/4011 · Zbl 0979.68005 · doi:10.1142/4011
[13] Kapur P. K., Operations Research (2001)
[14] Kapur , P. K. Kumar , D. Gupta , A. and Jha , P. C. 2006. On How To Model software Reliability Growth in the Presence Of Imperfect Debugging and Fault Generation. 2006. Proceedings of 2nd International Conference on Reliability and safety Engineering, pp.515–523.
[15] Kapur, Journal of Applied Mathematics 14 pp 27– (2003)
[16] DOI: 10.1016/S0164-1212(96)00109-4 · Zbl 05433264 · doi:10.1016/S0164-1212(96)00109-4
[17] DOI: 10.1007/978-3-642-45587-2_10 · doi:10.1007/978-3-642-45587-2_10
[18] Ohba , M. and Chou , X. M. 1989. ”Does Imperfect Debugging effect Software Reliability Growth”. 1989. proceedings of 11th International Conference of Software Engineering, pp.237–244.
[19] DOI: 10.1109/24.55878 · Zbl 0709.68011 · doi:10.1109/24.55878
[20] Saaty T. L., Eur. Journal of Operational Research 1990 pp 9– (48)
[21] DOI: 10.1109/24.210278 · Zbl 0775.90200 · doi:10.1109/24.210278
[22] Yamada S., IEEE Trans. on Reliability 35 (1) pp 19– (1986) · doi:10.1109/TR.1986.4335332
[23] DOI: 10.1016/0895-7177(95)00207-I · Zbl 0836.62077 · doi:10.1016/0895-7177(95)00207-I
[24] DOI: 10.1109/TR.1984.5221826 · doi:10.1109/TR.1984.5221826
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.