×

Analysis of stress singularity in adhesive joints using meshless methods. (English) Zbl 07511063

MSC:

74-XX Mechanics of deformable solids
92-XX Biology and other natural sciences
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Da Silva, L. F.; Öchsner, A.; Adams, R. D., Handbook of adhesion technology (2011), Springer Science & Business Media: Springer Science & Business Media Berlin, Germany
[2] Ebnesajjad, S.; Landrock, A. H., Adhesives technology handbook (2014), William Andrew: William Andrew London, UK
[3] Du, J.; Salmon, F. T.; Pocius, A. V., Modeling of cohesive failure processes in structural adhesive bonded joints, J Adhes Sci Technol, 18, 3, 287-299 (2004)
[4] Gui, C.; Bai, J.; Zuo, W., Simplified crashworthiness method of automotive frame for conceptual design, Thin Walled Struct, 131, 324-335 (2018)
[5] Volkersen, O., Die Nietkraftverteilung in zugbeanspruchten Nietverbindungen mit konstanten Laschenquerschnitten, Jahrb Dtsch Luftfahrtforsch, 15, 41-47 (1938)
[6] da Silva, L. F.; das Neves, P. J.; Adams, R.; Spelt, J., Analytical models of adhesively bonded joints—Part I: literature survey, Int J Adhes Adhes, 29, 3, 319-330 (2009)
[7] Goland, M.; Reissner, E., The stresses in cemented joints, J Appl Mech, 66, A17-A27 (1944)
[8] Hart-Smith, L.J., Adhesive-bonded single-lap joints, in NASA Contract Report, NASA CR-112236. 1973. https://ntrs.nasa.gov/citations/19740005083.
[9] De Sousa, C. C.R. G.; Campilho, R. D.S. G.; Marques, E. A.S.; Costa, M.; da Silva, L. F.M., Overview of different strength prediction techniques for single-lap bonded joints, Proc Inst Mech Eng Part L J Mater Des Appl, 231, 210-223 (2017)
[10] Crocombe, A., Global yielding as a failure criterion for bonded joints, Int J Adhes Adhes, 9, 3, 145-153 (1989)
[11] Campilho, R. D., Strength prediction of adhesively-bonded joints (2017), CRC Press: CRC Press Boca Raton, U.S.
[12] Razavi, S. M.J.; Ayatollahi, M. R.; Majidi, H. R.; Berto, F., A strain-based criterion for failure load prediction of steel/CFRP double strap joints, Compos Struct, 206, 116-123 (2018)
[13] Kim, M. H.; Hong, H. S., An adaptation of mixed-mode I+ II continuum damage model for prediction of fracture characteristics in adhesively bonded joint, Int J Adhes Adhes, 80, 87-103 (2018)
[14] Santos, T.; Campilho, R., Numerical modelling of adhesively-bonded double-lap joints by the extended finite element method, Finite Elem Anal Des, 133, 1-9 (2017)
[15] Ramalho, L. D.C.; Campilho, R. D.S. G.; Belinha, J.; da Silva, L. F.M., Static strength prediction of adhesive joints: a review, Int J Adhes Adhes, 96, Article 102451 pp. (2020)
[16] Da Silva, L. F.M.; Campilho, R. D.S. G., Advances in numerical modelling of adhesive joints, Advances in numerical modeling of adhesive joints (2012), Springer: Springer Heidelberg · Zbl 1284.74002
[17] Zhang, J.; Wang, J.; Yuan, Z.; Jia, H., Effect of the cohesive law shape on the modelling of adhesive joints bonded with brittle and ductile adhesives, Int J Adhes Adhes, 85, 37-43 (2018)
[18] Rice, J. R., A path independent integral and the approximate analysis of strain concentration by notches and cracks, J Appl Mech, 35, 2, 379-386 (1968)
[19] Rybicki, E. F.; Kanninen, M. F., A finite element calculation of stress intensity factors by a modified crack closure integral, Eng Fract Mech, 9, 4, 931-938 (1977)
[20] Leguillon, D., Strength or toughness? A criterion for crack onset at a notch, Eur J Mech A Solids, 21, 1, 61-72 (2002) · Zbl 1061.74047
[21] Williams, M. L., The stresses around a fault or crack in dissimilar media, Bull Seismol Soc Am, 49, 2, 199-204 (1959)
[22] Bogy, D. B., Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading, J Appl Mech, 35, 3, 460-466 (1968) · Zbl 0187.46201
[23] Noda, N.; Li, R.; Miyazaki, T.; Takaki, R.; Sano, Y., Convenient adhesive strength evaluation method in terms of the intensity of singular stress field, Int J Comput Methods, 16, 01, Article 1850085 pp. (2019) · Zbl 1404.74056
[24] Goglio, L.; Rossetto, M., Stress intensity factor in bonded joints: influence of the geometry, Int J Adhes Adhes, 30, 5, 313-321 (2010)
[25] Askarinejad, S.; Thouless, M. D.; Fleck, N. A., Failure of a pre-cracked epoxy sandwich layer in shear, Eur J Mech A Solids, 85, Article 104134 pp. (2021) · Zbl 1476.74130
[26] Akhavan-Safar, A.; Ayatollahi, M. R.; Rastegar, S.; da Silva, L. F.M., Impact of geometry on the critical values of the stress intensity factor of adhesively bonded joints, J Adhes Sci Technol, 31, 18, 2071-2087 (2017)
[27] Liu, G. R.; Gu, Y. T., An introduction to meshfree methods and their programming (2005), Springer Science & Business Media: Springer Science & Business Media Dordrecht, The Netherlands
[28] Wang, J.; Liu, G., A point interpolation meshless method based on radial basis functions, Int J Numer Methods Eng, 54, 11, 1623-1648 (2002) · Zbl 1098.74741
[29] Dinis, L.; Jorge, R. N.; Belinha, J., Analysis of 3D solids using the natural neighbour radial point interpolation method, Comput Methods Appl Mech Eng, 196, 13-16, 2009-2028 (2007) · Zbl 1173.74469
[30] Belinha, J., Meshless methods in biomechanics: bone tissue remodelling analysis, 16 (2014), Springer: Springer Switzerland · Zbl 1314.92001
[31] Farahani, B. V.; Tavares, P. J.; Moreira, P. M.G. P.; Belinha, J., Stress intensity factor calculation through thermoelastic stress analysis, finite element and RPIM meshless method, Eng Fract Mech, 183, 66-78 (2017)
[32] Ramalho, L.; Sánchez-Arce, I.; Campilho, R.; Belinha, J.; Silva, F., Strength prediction and stress analysis of adhesively bonded composite joints using meshless methods, Procedia Manuf, 51, 904-911 (2020)
[33] Sánchez-Arce, I.; Ramalho, L.; Campilho, R.; Belinha, J., Analyzing single-lap joints bonded with a brittle adhesive by an elastic meshless method, Procedia Struct Integr, 28, 1084-1093 (2020)
[34] Wen, P. H.; Tang, Y. D.; Sladek, J.; Sladek, V., BEM analysis for curved cracks, Eng Anal Bound Elem, 127, 91-101 (2021) · Zbl 1464.74333
[35] Useche, J.; Medina, C., Boundary element analysis of laminated composite shear deformable shallow shells, Compos Struct, 199, 24-37 (2018)
[36] Shiah, Y. C.; Hematiyan, M. R., Interlaminar stresses analysis of three-dimensional composite laminates by the boundary element method, J Mech, 34, 6, 829-837 (2018)
[37] Jia, P. H.; Lei, L.; Hu, J.; Chen, Y.; Han, K.; Huang, W. F.; Nie, Z.; Liu, Q. H., Twofold domain decomposition method for the analysis of multiscale composite structures, IEEE Trans Antennas Propag, 67, 9, 6090-6103 (2019)
[38] Campilho, R. D.S. G.; Banea, M. D.; Pinto, A. M.G.; da Silva, L. F.M.; De Jesus, A. M.P., Strength prediction of single-and double-lap joints by standard and extended finite element modelling, Int J Adhes Adhes, 31, 5, 363-372 (2011)
[39] Campilho, R. D.S. G.; Pinto, A. M.G.; Banea, M. D.; Silva, R. F.; da Silva, L. F.M., Strength improvement of adhesively-bonded joints using a reverse-bent geometry, J Adhes Sci Technol, 25, 18, 2351-2368 (2011)
[40] Bathe, K. J., Finite element procedures (2006), Klaus-Jurgen Bathe
[41] Liu, G. R., A point assembly method for stress analysis for two-dimensional solids, Int J Solids Struct, 39, 1, 261-276 (2002) · Zbl 1090.74699
[42] Wang, J. G.; Liu, G. R., On the optimal shape parameters of radial basis functions used for 2-D meshless methods, Comput Methods Appl Mech Eng, 191, 23-24, 2611-2630 (2002) · Zbl 1065.74074
[43] Qian, Z.; Akisanya, A., Wedge corner stress behaviour of bonded dissimilar materials, Theor Appl Fract Mech, 32, 3, 209-222 (1999)
[44] Dundurs, J., Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading, J Appl Mech, 35, 460-466 (1969)
[45] Liu, G. R., Meshfree methods (2010), CRC Press: CRC Press Boca Raton · Zbl 1205.74003
[46] Cordes, L. W.; Moran, B., Treatment of material discontinuity in the element-free Galerkin method, Comput Methods Appl Mech Eng, 139, 1-4, 75-89 (1996) · Zbl 0918.73331
[47] Ramalho, L. D.C.; Campilho, R. D.S. G.; Belinha, J., Single lap joint strength prediction using the radial point interpolation method and the critical longitudinal strain criterion, Eng Anal Bound Elem, 113, January, 268-276 (2020) · Zbl 1464.74129
[48] Gleich, D. M.; Van Tooren, M. J.L.; Beukers, A., Analysis and evaluation of bondline thickness effects on failure load in adhesively bonded structures, J Adhes Sci Technol, 15, 9, 1091-1101 (2001)
[49] Adams, R.; Peppiatt, N., Stress analysis of adhesive-bonded lap joints, J Strain Anal, 9, 3, 185-196 (1974)
[50] Ji, G.; Ouyang, Z.; Li, G.; Ibekwe, S.; Pang, S. S., Effects of adhesive thickness on global and local Mode-I interfacial fracture of bonded joints, Int J Solids Struct, 47, 18-19, 2445-2458 (2010) · Zbl 1196.74241
[51] Campilho, R. D.S. G.; De Moura, M. F.S. F.; Domingues, J. J.M. S., Modeling single and double-lap repairs on composite materials, Compos Sci Technol, 65, 13, 1948-1958 (2005)
[52] Nunes, S. L.S.; Campilho, R. D.S. G.; Da Silva, F. J.G.; De Sousa, C. C.R. G.; Fernandes, T. A.B.; Banea, M. D.; Da Silva, L. F.M., Comparative failure assessment of single and double lap joints with varying adhesive systems, J Adhes, 92, 7-9, 610-634 (2016)
[53] Aydin, M. D.; Özel, A.; Temiz, Ş., The effect of adherend thickness on the failure of adhesively-bonded single-lap joints, J Adhes Sci Technol, 19, 8, 705-718 (2005)
[54] Fernandes, T. A.B.; Campilho, R. D.S. G.; Banea, M. D.; da Silva, L. F.M., Adhesive selection for single lap bonded joints: experimentation and advanced techniques for strength prediction, J Adhes, 91, 10-11, 841-862 (2015)
[55] Galvez, P.; Noda, N. A.; Takaki, R.; Sano, Y.; Miyazaki, T.; Abenojar, J.; Martínez, M. A., Intensity of singular stress field (ISSF) variation as a function of the Young’s modulus in single lap adhesive joints, Int J Adhes Adhes, 95, Article 102418 pp. (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.