×

zbMATH — the first resource for mathematics

A valuation-based system approach for risk assessment of belief rule-based expert systems. (English) Zbl 1441.68250
Summary: Belief rules extend traditional IF-THEN rules to represent vagueness, incompleteness, and nonlinear causal relationships by assigning belief degrees to singletons or the universe of all possible values that the consequents of rules can take. First, this paper extends belief rules by assigning belief degrees to the subsets of all possible values that the consequents of rules with interval-valued rule weights can take. Then, this paper proposes a Valuation-Based System (VBS) approach for the modeling and risk assessment of extended belief rule-based expert systems. Finally, the proposed VBS approach is applied to two use cases for evaluating the occurrence probabilities of accidents: one is a car equipped with Automated Speed Control (ASC) using values from experts, and the other is hazardous material (hazmat) transportation accidents using real statistical data.
MSC:
68T35 Theory of languages and software systems (knowledge-based systems, expert systems, etc.) for artificial intelligence
68T37 Reasoning under uncertainty in the context of artificial intelligence
90B20 Traffic problems in operations research
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] AbuDahab, K.; Xu, D. L.; Chen, Y. W., A new belief rule base knowledge representation scheme and inference methodology using the evidential reasoning rule for evidence combination, Expert Syst. Appl., 51, 218-230 (2016)
[2] Aguirre, F.; Sallak, M.; Vanderhaegen, F.; Berdjag, D., An evidential network approach to support uncertain multiviewpoint abductive reasoning, Inf. Sci. (Ny), 253, 110-125 (2013)
[3] Benavoli, A.; Ristic, B.; Farina, A.; Oxenham, M.; Chisci, L., An application of evidential networks to threat assessment, IEEE Trans. Aerosp. Electron. Syst., 45, 2, 620-639 (2009)
[4] Chang, L.; Sun, J.; Jiang, J.; Li, M., Parameter learning for the belief rule base system in the residual life probability prediction of metalized film capacitor, Knowl. Based Syst., 73, 69-80 (2015)
[5] Chang, L.; Zhou, Z.; You, Y.; Yang, L.; Zhou, Z., Belief rule based expert system for classification problems with new rule activation and weight calculation procedures, Inf. Sci. (Ny), 336, 75-91 (2016)
[6] Chang, L.-l.; Zhou, Z.-j.; Chen, Y.-w.; Liao, T.-j.; Hu, Y.; Yang, L.-h., Belief rule base structure and parameter joint optimization under disjunctive assumption for nonlinear complex system modeling, IEEE Trans. Syst. Man Cybern. Syst., 1-13 (2017)
[7] Chang, T. R.; Wang, C. S.; Wang, C. C., A systematic approach for green design in modular product development, Int. J. Adv. Manuf. Technol., 68, 9-12, 2729-2741 (2013)
[8] Dempster, A. P., Upper and lower probabilities induced by a multivalued mapping, Ann. Math. Stat., 38, 325-339 (1967) · Zbl 0168.17501
[9] Denoeux, T., The cautious rule of combination for belief functions and some extensions, Proceedings of the Ninth International Conference on Information Fusion, 1-8 (2006), Florence, Italy
[10] Jia, L.; Jiao, H.; Ding, W., Rough-set belief rule model using multinomial subjective logic, IET Sci. Meas. Technol., 9, 3, 362-366 (2015)
[11] Jiao, L.; Denœ ux, T.; Pan, Q., A hybrid belief rule-Based classification system based on uncertain training data and expert knowledge a hybrid belief rule-based classification system based on uncertain training data and expert knowledge, IEEE Trans. Syst. Man Cybern. Part A Syst. Hum., 46, 12, 1711-1723 (2016)
[12] Jiao, L.; Pan, Q.; Denœ ux, T.; Liang, Y.; Feng, X., Belief rule-based classification system: extension of FRBCS in belief functions framework, Inf. Sci. (Ny), 309, 26-49 (2015) · Zbl 1390.68535
[13] Kabir, G.; Sumi, R. S.; Sadiq, R.; Tesfamariam, S., Performance evaluation of employees using Bayesian belief network model, Int. J. Manag. Sci. Eng. Manag., 9653, 1-9 (2017)
[14] Kong, G.; Xu, D.-L.; Body, R.; Yang, J.-B.; Mackway-Jones, K.; Carley, S., A belief rule-based decision support system for clinical risk assessment of cardiac chest pain, Eur. J. Oper. Res., 219, 564-573 (2012)
[15] Kong, G.; Xu, D. L.; Yang, J. B.; Yin, X.; Wang, T.; Jiang, B.; Hu, Y., Belief rule-based inference for predicting trauma outcome, Knowl. Based. Syst., 95, 35-44 (2016)
[16] Liao, S. H., Expert system methodologies and applications-a decade review from 1995 to 2004, Expert Syst. Appl., 28, 93-103 (2005)
[17] Liu, H.-C.; Liu, L.; Lin, Q.-L., Fuzzy failure mode and effects analysis using fuzzy evidential reasoning and belief rule-based methodology, IEEE Trans. Reliab., 62, 1, 23-36 (2013)
[18] Mahata, G. C.; De, S. K., Supply chain inventory model for deteriorating items with maximum lifetime and partial trade credit to credit-risk customers, Int. J. Manag. Sci. Eng. Manag., 12, 1, 21-32 (2017)
[19] Qiu, S.; Rachedi, N.; Sallak, M.; Vanderhaegen, F., A quantitative model for the risk evaluation of driver-ADAS systems under uncertainty, Reliab. Eng. Syst. Saf., 167, 184-191 (2017)
[20] Qiu, S.; Sacile, R.; Sallak, M.; Schön, W., On the application of valuation-Based systems in the assessment of the probability bounds of hazardous material transportation accidents occurrence, Saf. Sci., 72, 83-96 (2015)
[21] Qiu, S.; Sallak, M.; Schön, W.; Cherfi-Boulanger, Z., Application of valuation-Based systems for the availability assessment of systems under uncertainty, Control Eng. Pract., 66, 39-50 (2017)
[22] Qiu, S.; Sallak, M.; Schön, W.; Ming, H. X., Extended LK heuristics for the optimization of linear consecutive-k-out-of-n: f systems considering parametric uncertainty and model uncertainty, Reliab. Eng. Syst. Saf., 175, 51-61 (2018)
[23] Shafer, G., A Mathematical Theory of Evidence (1976), New Jersey: Princeton University Press · Zbl 0359.62002
[24] Shenoy, P. P., A valuation-based language for expert systems, Int. J. Approx. Reason., 3, 5, 383-411 (1989)
[25] Shenoy, P. P., Valuation-based systems for propositional logic, (Ras, Z. W.; Zemankova, M.; Emrich, M. L., Methodologies for Intelligent Systems (1990)), 305-312
[26] Shenoy, P. P., Valuation based systems: a framework for managing uncertainty in expert systems, (A., L.; Zadeh; Kacprzyk, J., Fuzzy Logic and the Management of Uncertainty (1992), New York), 83-104
[27] Shenoy, P. P., Binary join trees for computing marginals in the Shenoy-Shafer architecture, Int. J. Approx. Reason., 17, 2-3, 239-263 (1997) · Zbl 0939.68021
[28] Smets, P., Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem, Int. J. Approx. Reason., 9, 1-35 (1993) · Zbl 0796.68177
[29] Smets, P.; Kennes, R., The transferable belief model, Artif. Intell., 66, 191-234 (1994) · Zbl 0807.68087
[30] Vanderhaegen, F., Dissonance engineering : a new challenge to analyse risky knowledge when using a system, Int. J. Comput. Commun. Control, 9, 6, 670-679 (2014)
[31] Wang, Y. M.; Yang, J. B.; Xu, D. L.; Chin, K. S., Consumer preference prediction by using a hybrid evidential reasoning and belief rule-based methodology, Expert Syst. Appl., 36, 8421-8430 (2009)
[32] Xu, D. L.; Liu, J.; Yang, J. B.; Liu, G. P.; Wang, J.; Jenkinson, I.; Ren, J., Inference and learning methodology of belief-rule-based expert system for pipeline leak detection, Expert Syst. Appl., 32, 103-113 (2007)
[33] Yager, R. R., On the dempster-shafer framework and new combination rules, Inf. Sci. (Ny), 41, 2, 93-137 (1987) · Zbl 0629.68092
[34] Yang, J. B.; Liu, J.; Wang, J.; Sii, H. S.; Wang, H. W., Belief rule-base inference methodology using the evidential reasoning approach - RIMER, IEEE Trans. Syst. Man Cybern. Part A Syst. Hum., 36, 2, 266-285 (2006)
[35] Yang, J. B.; Liu, J.; Xu, D. L.; Wang, J.; Wang, H., Optimization models for training belief-rule-based systems, IEEE Trans. Syst. Man Cybern. Part A Syst. Hum., 37, 4, 569-585 (2007)
[36] Yang, J. B.; Wang, Y. M.; Xu, D. L.; Chin, K. S.; Chatton, L., Belief rule-based methodology for mapping consumer preferences and setting product targets, Expert Syst. Appl., 39, 4749-4759 (2012)
[37] Yang, L. H.; Wang, Y. M.; Su, Q.; Fu, Y. G.; Chin, K. S., Multi-attribute search framework for optimizing extended belief rule-based systems, Inf. Sci. (Ny), 370-371, 159-183 (2016)
[38] Yang, Y.; Fu, C.; Chen, Y.-W.; Xu, D.-L.; Yang, S.-L., A belief rule based expert system for predicting consumer preference in new product development, Knowl. Based Syst., 94, 105-113 (2016)
[39] Zhao, L.; Wang, X.; Qian, Y., Analysis of factors that influence hazardous material transportation accidents based on Bayesian networks: a case study in china, Saf. Sci., 50, 4, 1049-1055 (2012)
[40] Zhou, Z.-G.; Liu, F.; Li, L.-L.; Jiao, L.-C.; Zhou, Z.-J.; Yang, J.-B.; Wang, Z.-L., A cooperative belief rule based decision support system for lymph node metastasis diagnosis in gastric cancer, Knowl. Based Syst., 85, 62-70 (2015)
[41] Zhou, Z. J.; Hu, C. H.; Xu, D. L.; Yang, J. B.; Zhou, D. H., Bayesian reasoning approach based recursive algorithm for online updating belief rule based expert system of pipeline leak detection, Expert Syst. Appl., 38, 3937-3943 (2011)
[42] Zhou, Z. J.; Hu, C. H.; Yang, J. B.; Xu, D. L.; Chen, M. Y.; Zhou, D. H., A sequential learning algorithm for online constructing belief-rule-based systems, Expert Syst. Appl., 37, 1790-1799 (2010)
[43] Zhou, Z. J.; Hu, C. H.; Yang, J. B.; Xu, D. L.; Zhou, D. H., Online updating belief rule based system for pipeline leak detection under expert intervention, Expert Syst. Appl., 36, 7700-7709 (2009)
[44] Zhou, Z.-j.; Hu, C.-h.; Yang, J.-b.; Xu, D.-l.; Zhou, D.-h.; Member, S., Online updating belief-Rule-Base using the RIMER approach, IEEE Trans. Syst. Man Cybern. Part A Syst. Hum., 41, 6, 1225-1243 (2011)
[45] Zhu, T.; Zhao, L.-j.; Wang, X.-l., Analysis of the hazardous material transportation accidents based on the Bayesian network method, J. Saf. Environ., 16, 2, 53-60 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.