×

Numerical approximation of the Smagorinsky turbulence model applied to the primitive equations of the ocean. (English) Zbl 07312580

Summary: This paper deals with the development of efficient numerical solvers for the primitive equations of the ocean in turbulent regime. We derive the numerical approximation of a reduced model by the Smagorinsky turbulence model that includes stabilization of the pressure discretization by a penalty technique. We perform the numerical analysis of this discretization (stability, convergence, error estimates), obtaining error estimates of at most first order in natural norms, due to the penalty structure of the Smagorinsky eddy viscosity. We finally perform some numerical tests for the primitive and Navier-Stokes equations, that confirm the theoretical convergence expectations.

MSC:

76-XX Fluid mechanics
86-XX Geophysics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Armaly, B. F.; Durst, F.; Pereira, J. C.F.; Schonung, B., Experimental and theoretical investigation of backward-facing step flow, J. Fluid Mech., 127, 473-496 (1983)
[2] Bernardi, C.; Maday, Y.; Rapetti, F., Discretisations variationnelles de problémes aux limites elliptiques (2004), Springer-Verlag: Springer-Verlag Berlín · Zbl 1063.65119
[3] Brézis, H., Analyse fonctionelle: Théorie et applications (1983), Masson: Masson Paris · Zbl 0511.46001
[4] Chacón Rebollo, T., An analysis technique for stabilized finite element solution of incompressible flows, Módel. Math. Anal. Númer., 35, 1, 57-89 (2001) · Zbl 0990.76039
[5] Chacón Rebollo, T.; Guillén, F., An intrinsic analysis of existence of solutions for the hydrostatic approximation of Navier-Stokes equations, C. R. Acad. Sci. Paris, Série I, 330, 841-846 (2000) · Zbl 0959.35134
[6] Chacón Rebollo, T.; Lewandowski, R.; Chacón, E., Analysis of the hydrostatic approximation in oceanography with compression term, M2AN, 34, 3, 525-537 (2000) · Zbl 0978.76101
[7] Chacón Rebollo, T.; Rodríguez Gomez, D., A numerical solver for the primitive equations of the ocean using term-by-term stabilization, Appl. Numer. Math., 55, 1, 1-31 (2005), Comput. Methods Appl. Mech. Eng. 196 (2007), 2413-2430 · Zbl 1072.76037
[8] Delecluse, P.; Madec, G., Ocean modelling and the role of the ocean in the climate system, (Holland, W. R.; Joussaume, S.; David, F., Modeling the Earth’s Climate and its Variability. Les Houches, Session LXVII 1997 (1999), Elsevier Science), 237-313
[9] Germano, M.; Piomelli, U.; Moin, P.; Cabot, P. W.H., A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A, 29, 7, 2323-2324 (1986)
[10] Lilly, D. K., The representation of small-scale turbulence in numerical simulation experiments. I, (Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences, Yorktown Heights (1967))
[11] Lilly, D. K., A proposed modification of the Germano subgrid closure method, Phys. Fluids A, 4, 3, 633-635 (1992)
[14] Prandtl, L., Bericht über Untersuchungen zur ausgebildeten Turbulenz, Zeitschrift für angewandte Mathematik und Mechanik, 5, 136-139 (1925) · JFM 51.0666.08
[15] Smagorinsky, J., General circulation experiment with the primitive equations. I. The basic experiment, Month. Weather Rev., 3, 99-164 (1963)
[16] Verfürth, R., Analysis of some finite element solutions for the Stokes problem, RAIRO Anal. Numér., 18, 175-182 (1984) · Zbl 0557.76037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.